Flippin’ coffins

We’ve been threatening to do it, and this week we followed through on our promise – to flip over the base of Tawahibre’s coffin.

As readers know, we have been working on Tawahibre’s coffin lid, and recently lifted it away from the base. Once we removed the lid, we could see that the interior of the base was undecorated, with plaster smoothed over the wood joins. There was also some textile remaining, presumably from the mummy who once was inside.

inside tawahibre

An interior view of the base of Tawahibre’s coffin

While the interior is undecorated, we know the same isn’t true for the exterior, based on a photo recovered awhile back in the Archives. After a bit more digging in Archives recently, we found even more detailed photographs of the coffin lid and base, taken sometime before they were put on exhibit back in the 1930s.

tawahibre front and back

Image from the Archives showing the front of the coffin lid and the back of the coffin base

Recovering old images like this is exciting because they potentially have a lot to tell us. In this case, this photograph is a good record of what the condition of the coffin was like soon after it was acquired by the museum. Like in the exhibit photograph I had recovered earlier, I could see that a lot of the damage we’re seeing on the coffin lid today was present then. But there was no way of knowing, until this week, how the current condition of the coffin base compares to the condition seen in this photograph.

And I have to tell you, I was a bit worried – until just a few days ago, all I could see of the coffin base was from these views:

Detail views of the proper right and proper left sides of the coffin lid and base, before treatment

Detail views of the proper right and proper left sides of the coffin lid and base, before treatment

Those large chunks of plaster and paint on the wood support below weren’t very promising. I had a sinking feeling that a lot of the paint and plaster on the back of the coffin base was unstable as well, and going to fall away when we tried to lift and flip it over.

The first step in getting the coffin base flipped over was to stabilize the plaster and paint on the inside and sides of the base, as much as possible. I carried out this work using the same methyl cellulose adhesive solution and fill material mixture as I have been using on the lid.

Then we did a test lift, to see how stable it felt, and to determine if we needed to temporarily stabilize any areas on the back before turning it over.

test liftThe test lift was encouraging, so we decided just to go for it!

How many conservators do you need to flip over a coffin base? Eight, it turns out.

flipping over1Fortunately, the procedure went smoothly, smoothly enough that we even allowed our Public Relations Coordinator Tom Stanley post a video of us turning the base over on the museum’s Instagram account.

Once we turned the base over, we were rewarded by being able to see that the back is still remarkably well-preserved, with very little changes from when that old photograph was taken:

Tawahibre's base in the 1920s (left) and today (right)

Tawahibre’s base in the 1920s (left) and today (right)

Can you spot the differences in these two photographs? I’ll post another copy of this image soon, circling the changes that have occurred.

 

Looking inside our falcon mummy

Last Friday, 7 of us from our conservation department took a group of objects from the museum to the GE Inspection Technologies Customer Solutions Center in Lewistown, PA for x-radiography and CT scanning.

Our group gathered around the CT scanner, being operated by Becky Rudolph, GE's North American Radiography Sales Manager for Academia

Our group gathered around the CT scanner, being operated by Becky Rudolph, GE’s North American Radiography Sales Manager for Academia

Now, wait just a second, you might be thinking. Doesn’t Penn have its own x-ray and CT scanning equipment? Why did we have to take these objects all the way to Lewistown for this work? Good questions, and we have a good answer. We just received word that in early 2014, construction will begin on our new conservation labs, which will include a digital x-ray suite. We plan to purchase the x-ray unit from GE, so a visit to their facilities was a chance for us to demo the equipment using some of our own artifacts!

The object I was most eager to image was our falcon mummy. X-ray and CT (computed tomography) scanning technology allow us to “virtually unwrap” this mummy, helping us understand how it was made and what is inside (and as visitors to the lab have heard me say, we can’t assume that there are any falcon remains inside-we can only hope!).

The falcon mummy laying on its storage support on the x-ray plate (within a lead-lined room)

The falcon mummy lying on its storage support on the x-ray plate (within a lead-lined room)

The quickest way to get a peek inside the falcon mummy’s wrappings is by taking an x-ray image. Digital x-ray technology is amazing – with a push of a button, 135 kV (kilovolts, measurement of the voltage), 2.0 mA (millamperes, measurement of the current) and 4 seconds later, we saw this:

falcon xray annotatedHooray! In this first attempt, we could already see that there are bird remains inside. The bright white material concentrated in the center of the mummy wrappings is the skeletal remains. In radiographic images, materials that are denser appear white because they do not allow x-rays to pass through. Materials that are less dense (such as the textile wrappings surrounding the bird bones) appear darker, because the x-rays are penetrating and passing through these materials. We can see in the image above that there are no skeletal remains in the “head” and the “feet” of the falcon mummy – these areas appear to have been sculpted with fabric. The slightly brighter white area near the feet just reflects an overlap of textile in that area.

While we were excited by this image, it immediately prompted more questions. We can see bird bones, but where is the skull? How much of the bird body is present? Are there any clues as to how the body was prepared for mummification? To answer these questions, we turned to the CT scanner.

CT scanning uses x-rays to produce cross-sectional images of an object, which can then be combined to produce three-dimensional views. CT provides a much more detailed look inside objects, and better distinction between different materials.

The CT unit at GE does not look like a medical CT scanner that many people may be familiar with. To scan the falcon, we had to stand the mummy upright in its box, which we then secured to the rotating stage inside the CT chamber with masking tape.

Right: Lynn Grant and I taped the falcon mummy in his box to the stage inside the CT chamber. Left: another view of the falcon mummy's box secured inside the CT chamber.

Left: Lynn Grant and I taped the falcon mummy in its box to the stage inside the CT chamber Right: another view of the falcon mummy’s box secured inside the CT chamber

The CT scanning took a bit longer than 4 seconds, but again, produced much more detailed images. Here is what one of the cross-sections looks like:

falcon cross section annotatedIn this image, the bones are visible as the most radio-opaque materials (so they are bright white). We were also excited to see the feathers, clearly visible as little circles reflecting the cross-section of the feather shafts, which are hollow. The various layers of linen wrapping are also very clear – clear enough to count! But other details are not so immediately clear to us, including the presence of the skull, and exactly how the remains were prepared.

Here is a screen shot from the program we are using to view the CT images, showing 3 different cross-sections, and a basic 3D rendering of a section of the falcon mummy. In this 3D rendering, we can clearly see the falcon’s talons, circled in red!

falcon CT 3 views annotatedWe will need to spend time with the images, and consult other specialists, to better understand what the CT scans have revealed.

image_2

UCLA/Getty graduate intern Alexis North and I puzzle over the CT images of the falcon mummy

We will follow up later with more images and interpretations of the falcon mummy CT scans, plus more about the other objects we were able to examine.

A special thank you to Becky Rudolph and Hank Rowe at GE for spending the day with us, and for their expertise!

 

X-ray excursion

If you stopped by the Artifact Lab this week, you might have noticed that our falcon mummy is no longer on display, and this sign in its place:

falcon signAs indicated on the sign, the falcon has been removed for x-radiography. This mummy has never been x-rayed before, and we’re interested in using this imaging technology to learn how it was made and if there are any falcon remains inside!

Along with the falcon, we’re also going to be x-raying/CT-scanning our (possibly headless) cat mummy, the wooden statue heads, and several other pieces.

We do not have the ability to x-ray and CT-scan objects here in the museum, so we will be taking these selected pieces for a little trip tomorrow. In preparation for their travels, they are securely packed, and ready for this exciting excursion!

The falcon mummy is secured inside its storage support and packed into a larger box for travel.

The falcon mummy is secured inside its storage support and packed into a larger box for travel.

We will update the blog with our findings soon after we return.

 

Let’s focus on the eyes.

eye

In a former post we saw that a conservator has to gather clues about an object’s past and do a lot of bibliographical research. Now let’s talk about the materials themselves and the amazing eyes of these two wooden heads.

During these last few weeks we have been busy trying to identify the materials used to make the eyes; we knew that there were three of them, one for the outer line (or eyelid), a second for the white part, and the third one for the black pupil. We first observed the eyes under a binocular microscope, which is the easiest way for a conservator to have a close look at an object.

Leica Picture

Wood is missing around the eyes, but it allows us to see more of the metal !

Leica Picture

Here is a pink-golden layer of copper that we can identify through the corrosion layers.

 

The material used for the eyelids was immediately identified as a copper alloy because of the green corrosion products observed on the surface. Moreover we can see the metallic pink-golden surface of the copper here and there. However, the metal could have also been silver with some copper impurities; indeed when two metals are combined or in contact with each other in a burial environment, the less precious metal preferentially corrodes (also called galvanic corrosion).

To know more about the chemical composition of this alloy, we carried out X-ray fluorescence analysis (XRF), with the portable XRF device of the Lab.

Here are what the results look like:

E17911 - eye - bluefilter

Those peaks indicate what kind of elements we have in the metal. We learned that this is an arsenic-copper alloy, which is well-known for Egyptian artifacts. The other elements can be impurities in the metal or due to the burial environment of the objects.

Concerning the white material, the first thing we observed under the microscope was the lines in the material.

Leica Picture

Some detail of the lines.

IC800516

A clue for us was that we don’t see the lines across the entire surface, as we can see on the picture on the right (near the upper part of the pupil).

We first wondered if these lines indicated elephant ivory, since elephant ivory has unique features called Schreger lines. However, the lines in the whites of the eyes do not look like Schreger lines, which look more like cross-hatching. That’s why we then thought about tool marks; indeed, the Egyptian sometimes marked the material they used to make the white of inlaid eyes, to make them look more realistic. We quickly abandoned this theory because the pattern on the eyes is too regular and not spread across the entire surface.

So we returned to the idea that the material might be ivory, but what kind of ivory? We were lucky that our department recently acquired a complete set of ivory samples, so we could compare directly. It turned out that our eyes are made of hippo ivory. XRF analysis also revealed that the white is composed of calcium, which is coherent for ivory.

ivory

This is elephant ivory.

 

IC800527 - Copy

Here is an example of what hippo ivory looks like, with the entire surface covered with lines.

IC800522

Here is an area of the hippo ivory where we can see the limit between the lines and a smooth part.

Concerning the material used to make the black of the eyes, a few paths could be followed. According to the literature, Egyptians used obsidian, glass with a black substance on the back, or other black materials for the inlaid eye pupils. The microscopic observation of the wooden statue eyes revealed that the black material is translucent with tiny bubbles. This structure could indicate obsidian, which is a natural glass. Moreover, the Penn Museum has several spare eyes in storage; comparison with these known references confirmed that the pupils of the wooden heads are indeed made from obsidian.

Leica Picture

We will know more about the structure of the eyes by next week, since this Friday the heads are going to be X-rayed and CT-scanned !