Wood ID

I’m currently treating 7 fragments of a painted wooden coffin from Abydos. Lately, many of our visitors have been asking what kind of wood was used to make this coffin. This has actually been a question that we have been asking ourselves, and we are trying to see if we can come up with an answer.

In ancient Egypt, large timbers for coffin-making were scarce, so the wood was either imported from places like the Mediterranean, the Near East, or from other parts of Africa, or the Egyptians would cobble together smaller pieces of wood from local sources. Based on previous studies, we have a finite list of types of wood that are known to have been used, but from there we need to move to looking at the object itself.

These images show the exposed wood on the side (left) and back (right) of one of the coffin fragments. Can you guess what type of wood this might be?

These images show the exposed wood on the side (left) and back (right) of one of the coffin boards. Can you guess what type of wood this might be?

As conservators, we are educated not only in object treatment, but in the analysis of objects, and the examination of tiny fragments of objects, like plant and textile fibers, wood, and pigments. But many of us don’t do wood ID all that often, so it can take awhile to get set up, to re-orient ourselves to what we’re seeing in the samples, etc. AND it requires a sample, which we don’t often have access to. Fortunately, for me, I have some already detached samples from these boards and access to someone who does this type of work more frequently, archaeobotanist Dr. Naomi Miller, so I turned to her to help me with this work.

Dr. Miller looked at the samples I had and selected one that looked promising, due to the exposed cross-section on one end. I mounted this sample under our binocular microscope and took a photo, to help her study it further and compare to known reference samples.

E12505_woodID

The wood fragment with exposed cross section, 60X magnification

From this sample, Dr. Miller was able to determine that this is a hardwood, based on the presence of clearly visible rays and thick-walled pores, many of which are radially paired (pointed out below).

Slide4Based on these features and the known types of hardwoods used in ancient Egypt, this helped narrow down the likely possibilities to Common ash (Fraxinus excelsior L.), Carob (Ceratonia siliqua L.) and Acacia (Acacia sp.). Dr. Miller considered other types but ultimately excluded willow (Salix), oak (Quercus), elm (Ulmus) and sycamore fig (Ficus sycomorus) due to either the presence or absence of certain features.

In an attempt to further narrow down the possibilities, I cut thin sections from the sample that Dr. Miller examined, from the cross-section and tangential surfaces, and wet-mounted them on glass slides. Looking at these thin sections with our polarizing light microscope (PLM), I was able to see some of these features a bit more clearly.

Cross-section, 50X magnification

Cross-section, 50X magnification

In the cross-section above, the pores are visible as solitary or paired, and mostly uniseriate (1-cell wide) rays are visible. The tangential section also shows mostly uniseriate rays, but some bi-seriate rays are visible as well.

Tangential section, 50X magnification

Tangential section, 50X magnification

Cutting these sections from the wood sample, which was quite degraded, was difficult and unfortunately I’m not really able to pick out many other features from the sections that I examined. I will have to get Dr. Miller to weigh in on this again, but in the meantime, I’m going to go out on a limb and say that I’m leaning toward this wood being acacia. One thing I forgot to mention is that the wood of the coffin board fragments is a deep red-brown color. Acacia is known for being a red, hard, and durable wood, and while it produces small timbers, we know that it was used for coffin-making, among other things.

Completing the treatment of Tawahibre’s coffin

Things have been pretty busy around here lately, and I almost forgot to post some updates about several projects. One project in particular is the treatment of Tawahibre’s coffin. We have been working on this 2-part painted wooden coffin in the lab for the last year, and we recently completed its treatment.

As you may remember, when the coffin first came up here, it was covered with a thick layer of dust and grime, the paint was badly flaking in areas, several large pieces of painted gesso were pulling away from the wood support, and there were large cracks throughout.

Before treatment photos (clockwise from left): upper half of coffin showing layer of dust and large cracks and losses; large piece of painted gesso partially detached from top of head; large loss on wig, showing old animal glue adhesive from a previous restoration

Before treatment photos (clockwise from left): upper half of coffin showing layer of dust and large cracks and losses; large piece of painted gesso partially detached from top of head; large loss on wig, showing old, shiny animal glue adhesive from a previous restoration

After cleaning the surface with a brush and vacuum, followed by cosmetic sponges, I consolidated the paint with a methyl cellulose solution, filled in cracks and gaps using Japanese tissue paper and a mixture of methyl cellulose bulked with cellulose powder and glass microballoons, and then toned the fills with acrylic paint. This work is explained in further detail in previous posts, which you can find by clicking on the links included in blue above.

fillingcracks

A detail shot of the wig showing an area with several large open cracks before and after filling with Japanese tissue paper and methyl cellulose/cellulose powder/glass microballoons mixture

Based on a discussion with our Egyptian section curators, I also made some aesthetic fills to mask some large losses, including 2 losses on the wig. We chose not to fill the losses on the nose and chin because filling these losses would require too much guess-work as to the original contours of these features.

Large loss on wig before (left), after application of Japanese tissue paper layer (middle), and after application of fill mixture (right)

Large loss on wig before (left), after application of Japanese tissue paper layer (middle), and during application of fill mixture (right)

Detail of the head and wig before (left) and after (right) conservation treatment, with losses in before treatment photo outlined in red

Detail of the head and wig before (left) and after (right) conservation treatment, with losses on the wig outlined in red. The larger loss on the right is the featured in the previous series of images.

I carried out similar work on the base of the coffin, and now both are complete:

Tawahibre's coffin lid before (left) and after (right) conservation treatment

Tawahibre’s coffin lid before (left) and after (right) conservation treatment

The coffin base before (left) and after (right) conservation treatment.

The coffin base before (left) and after (right) conservation treatment

As you can see, we chose not to fill many of the losses, focusing instead on stabilization.

This work will enable future exhibition of the coffin, and just as importantly, it will make further study of the coffin possible. All along there have been some discrepancies between the name that has always been associated with the coffin (Tawahibre, a woman’s name) and a previous translation in 1946 of the hieroglyphic text on the coffin (which identified the name of a male court official, the son of J-se(t)-N-Ese). There has also been some confusion about the remains once housed in the coffin, which were previously identified as male, but in a 1975 autopsy the remains were confirmed as belonging to a female in her mid-30s. A bit confusing, but hopefully we’re now one step closer to getting this all straightened out!

 

Fragmentary painted coffin from Abydos

If you are a member of the museum, you may have already seen some information about these painted coffin board fragments in the most recent issue of Expedition magazine:

E12505_2These fragments, which date to the Middle Kingdom (ca. 2000-1700 BCE), were excavated from the North Cemetery of Abydos in 1901 by John Garstang. The museum supported Garstang’s work through the Egypt Exploration Fund.

Despite the severe insect damage, the preservation of the painted details on these fragments is remarkable.

This fragment features 3 usekh collars, which were often reserved for nobility. Beside each collar is a mankhet, or counterpoise. The hieroglyphs above are the names of each of the collars, which are slightly different.

This fragment features 3 usekh collars, which were often reserved for nobility. Beside each collar is a mankhet, or counterpoise. The hieroglyphs above are the names of each of the collars, which are slightly different.

A detail of the usekh en nebti, the collar of the two mistresses that incorporates the uraeus and the vulture

A detail of the usekh en nebti, the collar of the two mistresses that incorporates the uraeus
and the vulture (7.5x magnification)

These coffin board fragments have never been exhibited, and our renewed interest in them is due to the fact that we are currently excavating tombs from the same time period in South Abydos, including the funerary complex of Senwosret III. You can read a lot more about this project in the recent Expedition issue and on the museum blog by following this link.

In order to exhibit the coffin fragments, they need some extensive conservation treatment. Their surfaces are dirty, the paint is cracked, cupped and lifting from the wood support, and is very fragile, and some of the boards are structurally unstable due to the extensive insect damage.

We are currently working on these boards in the lab, and we have made some good progress. We are cleaning the painted surfaces with a kneaded rubber eraser. The eraser can be shaped to a fine point, and working under the binocular microscope, it is possible to remove the dirt from most of the painted surface without disturbing the fragile paint.

We are using kneaded erasers (left) to clean the delicate painted surface of these coffin boards (right)

We are using kneaded erasers (left) to clean the delicate painted surface of these coffin boards (right)

Some areas of paint need to be stabilized before they can be cleaned. After testing a variety of adhesive solutions, I settled on my old friend methyl cellulose, a 2% solution of methyl cellulose in water to be exact, to consolidate fragile areas.

Paint consolidation is being carried out under the microscope with a fine brush

Paint consolidation is being carried out under the microscope with a fine brush

I am now working on testing some fill materials, both to stabilize the edges of lifting paint and also to stabilize the fragile wood. I will post an update as soon as I make some decisions and proceed with this part of the treatment!

 

Investigating the shabti box coating

Last month, I wrote about a new challenge in the lab, otherwise known as this shabti box and its associated shabtis:

front compressedAt first the box came into the lab with 3 shabtis, and then we found that there were 3 more in storage that may belong with the box as well. 4 of the shabtis are very similar in appearance whereas the other 2 are slightly different, so they may actually not be associated after all. Can you spot the 2 different shabtis?

2 of these things are not like the others...

2 of these things are not like the others…

All of these objects are made of wood, gesso, and paint. And as you can see, all of them have an orange-yellow coating on their surfaces. In my last post I posed the questions “what is this coating?” “is it an original varnish or is it a later restoration?”. My initial guesses were that it is either an original pistacia resin varnish, a later cellulose nitrate (or other old restoration adhesive) coating, or a combination of the two.

Well, there are several things we can do to try to answer these questions and to narrow down the possibilities. One of the first things I did was to look at these objects very carefully using our binocular microscope. I could see that the coating was applied unevenly, especially on the box, and that it is actively cracking and flaking. Another thing that I noticed was that there are areas on the box where the paint is lost and where the coating extends over the loss onto the gesso below.

A detail shot of one side of the shabti box - the yellow arrows are indicating areas where the coating extends over an area of paint loss onto the gesso.

A detail shot of one side of the shabti box – the yellow arrows are indicating where the coating extends over areas of paint loss onto the gesso.

Usually, this would indicate that the coating was applied after the damage occurred (so sometime after excavation, either in the field or soon after coming to the museum). So this is one clue, but doesn’t really answer my questions.

Next, I examined the shabti figures under ultraviolet (UV) light. In conservation we routinely use UV examination to characterize materials and to distinguish old restoration materials from original materials – for instance, shellac, used historically to repair objects, exhibits a characteristic bright orange fluorescence under UV. (For a great explanation of UV, along with some interesting images, check out this post on UV examination by my colleague Allison Lewis, conservator at UC Berkeley’s Phoebe A. Hearst Museum of Anthropology.)

The coating on the box and the shabtis has a yellow-orange appearance under UV – but not the bright orange that we expect to see from shellac.

shabti UV

4 shabti figures under UV light

So UV examination was helpful (it eliminated shellac as a possibility) but didn’t answer my questions either.

Next, I did a microchemical spot test on a couple of the previously detached flakes of the coating. We’ve used spot-testing before in the lab – the last time I wrote about it was in reference to the mystery fibers on Tawahibre’s coffin. In this case, I carried out a spot test for nitrates using diphenylamine (according to instructions in Material Characterization Tests for Objects of Art and Archaeology). Using this test, a sample containing nitrates will turn blue once a solution of diphenylamine/sulfuric acid is added. Below you can see the result of the test on one of the coating flakes from the shabti box (left) and the test on a control sample of cellulose nitrate adhesive (right).

Left: coating sample from the box after spot test (negative result) Right: control cellulose nitrate adhesive after spot test (positive result)

Left: coating sample from the box after spot test (negative result) Right: cellulose nitrate control after spot test (positive result)

Based on these results, it seems that the coating does not contain cellulose nitrate. This does not mean that the coating does not contain another recently-added adhesive. We have a few other ways of narrowing down the possibilities even further, and I will write about our continued work on this in my next post.

 

A new challenge in the lab

I am always pleased to see returning visitors to the Artifact Lab. And of course, people who have been here before want to know, what’s new? Visiting the lab is the best way to find out about our latest projects and progress, but this blog is the next best thing.

So, what is new around here? Well, I’ll let you take a look for yourself:

shabti boxThis object was featured in the “What in the World” series on the museum’s Facebook page this week. There were a wide range of guesses as to what this is; my favorites being a breadbox, an Egyptian mail box, a papyrus organizer, a holder for cat mummies, and an ancient Egyptian Matchbox-car garage.

Seriously though, this is a shabti box. Here is a shabti box that is similar in style, at the British Museum. Shabti boxes were used to house shabti figures. Shabtis were included in burials as servant figures that would carry out heavy work on behalf of the deceased. They were depicted as mummified and were inscribed with spells which, when recited, magically caused them to come to life and perform work for the deceased in the afterlife. Here are 3 shabtis that were originally housed in our shabti box:

shabtisThe shabti box and shabtis are made of wood, covered with a thin layer of gesso, and painted. They are in the lab for treatment because their surfaces are actively flaking. Not only is the paint flaking, but there is a yellow-orange coating over the painted surface that is badly flaking as well.

This yellow-orange coating is applied over the entire surface of the shabtis and the box (inside and out), and it is very thick in areas.

A detail of the shabti box showing areas where the coating is particularly thick (pointed out here with the red arrows).

A detail of the shabti box showing areas where the coating is particularly thick (pointed out here with the red arrows).

My first question is, what is this coating? Is it an original varnish or is it a later restoration?

The box and the shabtis date to the New Kingdom, ca. 1200 BCE. We know that varnishes such as those containing pistacia resin were used on painted wood in the New Kingdom, and these varnishes often appear yellow, although they may not have been yellow when first applied. We also know that these varnishes were applied unevenly – the application of the pistacia resin varnish has even been described as “messy” and it is acknowledged that its purpose was not an aesthetic one, but rather intended to make such objects more divine, or suitable for the afterlife (Serpico and White 2001). This description may help explain the rather sloppy appearance of the yellow-orange varnish on our shabti box and figures.

We cannot, however, discount the idea that this coating may be a later restoration. We know that archaeologists frequently stabilized artifacts in the field to allow for their safe recovery. Materials such as paraffin wax, gelatin, shellac, and cellulose nitrate have been used for this purpose in the field or once the objects found their way into museum collections (like the wooden heads Laura has been working on).

There are several ways in which we can try to determine what this coating is and when it may have been applied. We already have some clues, but we’ll share those in an upcoming post. Stay tuned for updates as we learn more!

 

Flippin’ coffins

We’ve been threatening to do it, and this week we followed through on our promise – to flip over the base of Tawahibre’s coffin.

As readers know, we have been working on Tawahibre’s coffin lid, and recently lifted it away from the base. Once we removed the lid, we could see that the interior of the base was undecorated, with plaster smoothed over the wood joins. There was also some textile remaining, presumably from the mummy who once was inside.

inside tawahibre

An interior view of the base of Tawahibre’s coffin

While the interior is undecorated, we know the same isn’t true for the exterior, based on a photo recovered awhile back in the Archives. After a bit more digging in Archives recently, we found even more detailed photographs of the coffin lid and base, taken sometime before they were put on exhibit back in the 1930s.

tawahibre front and back

Image from the Archives showing the front of the coffin lid and the back of the coffin base

Recovering old images like this is exciting because they potentially have a lot to tell us. In this case, this photograph is a good record of what the condition of the coffin was like soon after it was acquired by the museum. Like in the exhibit photograph I had recovered earlier, I could see that a lot of the damage we’re seeing on the coffin lid today was present then. But there was no way of knowing, until this week, how the current condition of the coffin base compares to the condition seen in this photograph.

And I have to tell you, I was a bit worried – until just a few days ago, all I could see of the coffin base was from these views:

Detail views of the proper right and proper left sides of the coffin lid and base, before treatment

Detail views of the proper right and proper left sides of the coffin lid and base, before treatment

Those large chunks of plaster and paint on the wood support below weren’t very promising. I had a sinking feeling that a lot of the paint and plaster on the back of the coffin base was unstable as well, and going to fall away when we tried to lift and flip it over.

The first step in getting the coffin base flipped over was to stabilize the plaster and paint on the inside and sides of the base, as much as possible. I carried out this work using the same methyl cellulose adhesive solution and fill material mixture as I have been using on the lid.

Then we did a test lift, to see how stable it felt, and to determine if we needed to temporarily stabilize any areas on the back before turning it over.

test liftThe test lift was encouraging, so we decided just to go for it!

How many conservators do you need to flip over a coffin base? Eight, it turns out.

flipping over1Fortunately, the procedure went smoothly, smoothly enough that we even allowed our Public Relations Coordinator Tom Stanley post a video of us turning the base over on the museum’s Instagram account.

Once we turned the base over, we were rewarded by being able to see that the back is still remarkably well-preserved, with very little changes from when that old photograph was taken:

Tawahibre's base in the 1920s (left) and today (right)

Tawahibre’s base in the 1920s (left) and today (right)

Can you spot the differences in these two photographs? I’ll post another copy of this image soon, circling the changes that have occurred.

 

Slowly, but surely

Sometimes when working on a large, complex project, it can be hard to see progress – once certain areas are addressed/stabilized I just start focusing on all of the other problems. In these cases, I find it really helpful to write about the work, to go through the photos I’ve taken so far, and to reflect on how far we’ve come. One of the more complex treatments we’re working on in the Artifact Lab is Tawahibre’s coffin.

The last time you saw Tawahibre on the blog, she was all tied up, Lilliputian-style.

Tawahibre capturedSince that last post, we actually have made quite a bit of progress, and have started realigning and filling areas where the gesso and smaller wood components have cracked and separated from the wood ground below.

One very precarious area has been a large section on the lower proper left side of the coffin – when the coffin came into the lab for treatment, this section was only just barely attached along the top, with the help of two wooden dowels as well. In addition to being just about ready to detach, this section was also very distorted and misaligned, with areas of the painted surface overlapping and abrading each other.

tawahibre PL detail BT with arrows

Before treatment detail of this large partially detached section. It was just barely attached along the top (indicated by red arrows) and by 2 wooden dowels (circled in green).

Here is a view of this section, before treatment, from above (the red arrows are just pointing out the area that I’m talking about, for clarity).

tawahibre PL detail overhead BT with arrowsAfter working to humidify and realign this area as much as possible, I prepared it for filling and stabilizing by lining the wood support below and the inside surface of the detached section as possible with Japanese tissue paper, adhered with methyl cellulose adhesive. The Japanese tissue paper will serve to make these fills more easily reversible in the future.

Tawahibre PL detail DT with arrows

Preparing this section for stabilization and filling. The red arrows are indicating the Japanese tissue paper used to line the inner surfaces of the coffin before filling.

To secure this section to the rest of the coffin, I applied a fill mixture between the large partially detached section and the wood support below. The fill mixture was made using 5% methyl cellulose adhesive in 1:1 water/ethanol bulked with a 1:1 ratio of alpha cellulose and 3M glass microballoons. The alpha cellulose and microballoons were chosen to create a lightweight, relatively dry, and easily moldable fill – they also make this mixture a bright white color. After applying the fill material, this section was again bound with the twill tape and ethafoam blocks to hold everything together while the fill dried.

Detail of this section after filling. Note-no straps are needed to hold it in place!!!

Detail of this section after filling.

And here is a detail showing this section from above – I think it makes a nice comparison with the before treatment shot from a similar angle, above.

Tawahibre PL detail above DT2So far this has been a successful course of treatment and we have filled several areas on the coffin. Our current goal is to get the lid stabilized enough so that we can separate it from the base, so that we can continue to work on both sections with better access to some of the very unstable, fragile areas.

Special thanks to my conservation colleagues for their help with brainstorming, problem-solving, and carrying out this treatment!

 

Tawahibre all tied up

When I wrote about the fantastic image we retrieved from our Archives a couple weeks ago showing our Mummy Gallery in 1935, I promised to provide an update on the treatment progress on Tawahibre’s coffin.

Well, why don’t I start with this:

A view of Tawahibre's coffin from above

A view of Tawahibre’s coffin from above

While you may not be sure what you’re looking at here, this looks like progress, doesn’t it? I’ll tell you what you are seeing – the coffin is tied in several places with cotton twill tape, holding small pieces of white Volara foam and blueboard (acid-free, lignin-free corrugated board) in place against the coffin surface.

A detail of the Volara foam and blueboard held in place with cotton twill tape

A detail of the Volara foam and blueboard held in place with cotton twill tape

The purpose of this system, other than looking kind of intriguing, is to place select pressure in areas on the coffin (whenever I say this I always think of the useful book The Gentle Art of Applied Pressure-the title speaks for itself). As I have described previously, the coffin is pretty distorted in areas, due to the fact that many of the individual wood elements have separated and moved apart and that the plaster has separated from the wood substrate. We are trying to realign these pieces as much as possible using humidification with a Preservation Pencil, which allows us to direct a small stream of warm humidified air in select areas, which helps the plaster and wood relax a bit and encourages movement. Once we get an area to move sufficiently, we then apply pressure to the area to hold everything in place.

Here Nina is directing a stream of humidified air with the Preservation Pencil and I am applying pressure with my hands.

Here Nina is directing a stream of humidified air with the Preservation Pencil and I am applying pressure with my hands.

We’re also continuing to consolidate the painted surface and readhere loose pieces of plaster and wood.

We don't usually work in teams, but yesterday we had a little group humidification and consolidation party!

This treatment has been a team effort, and yesterday we had a little group humidification and consolidation party!

While we’re making progress and becoming pretty comfortable with the coffin and the treatment, there are still some scary areas to deal with. This is an area that I’ll be tackling next:

A detail of a badly damaged area on the coffin, showing significant cracking and flaking and detached and displaced fragments

A detail of a badly damaged area on the coffin, showing significant cracking and flaking and detached and displaced fragments

Wish us luck as we continue this work!

From the Archives

The Penn Museum Archives is an incredible resource for us here at the museum.

A view into the Penn Museum Archives

A view into the Penn Museum Archives

When we begin working on objects in the conservation lab, we carry out preliminary research, which often includes searching for related materials in the Archives. Among the materials we may be interested in are archaeological field notes, letters between curators and archaeologists or collectors about the acquisition of specific artifacts, and old photographs.

Recently, Senior Archivist Alex Pezzati scanned some images for me, including this one, a shot of the Egyptian “Mummy Gallery” in 1935.

31011_mummyroom_1935_compressed

I was excited to see some of the artifacts we’re working on in the Artifact Lab right now in this photo. Can you pick some of them out? In the image below I’ve circled some of them in red.

The objects circled in red above are either being worked on in the Artifact lab or are on display in our accompanying exhibit

The objects circled in red above are either being worked on in the Artifact lab or are on display in our accompanying exhibit

These old exhibition photographs can be extremely valuable to conservators. Not only does this particular image tell us that certain artifacts were definitely on display, and when (which may not be recorded elsewhere), but it also shows us how they were displayed. In some cases, seeing the way that artifacts were previously displayed may help to explain damage, such as excessive fading on one side or adhesive residues left behind by an old mount. We can often make good guesses about this type of damage, but it’s always nice to have some proof!

What particularly excited me about this photograph is that it shows the coffin of Tawahibre in the gallery. We are currently working on this coffin in the lab, but it is still too fragile to separate the lid from the base to allow for examination of both pieces individually.

The coffin of Tawahibre in the Artifact Lab.

The coffin of Tawahibre in the Artifact Lab.

Just recently, Curator Dr. Jen Wegner was up in the lab and we were discussing the coffin and some of my observations, and she wondered out loud if the back had any text written on it. I had wondered the same thing myself but I knew that until we carried out further work, we wouldn’t be able to know.

BUT, since this 1935 photograph shows both the lid and the base of the coffin on display, we don’t have to wait any longer!

The lid and the base of Tawahibre's coffin, side by side in the Mummy Gallery in 1935.

The lid and the base of Tawahibre’s coffin, side by side in the Mummy Gallery in 1935.

As you can see in the above image, there is writing on the back! Now only if we could just hasten the conservation treatment so we can examine it for ourselves…

Another thing that is useful about this image is that is shows that much of the damage we’re seeing on the coffin today was present in 1935. This includes both major structural damage and extensive paint loss in areas. It is likely that the coffin came into our collection with this damage, which is somehow reassuring to me. I will also note this in my documentation.

Tawahibre's coffin in 1935 (left) and today (right). Much of the major damage we see today had already occurred by 1935. To highlight this, I've circled some of the damaged areas in red in both images.

Tawahibre’s coffin in 1935 (left) and today (right). Much of the major damage we see today had already occurred by 1935. To highlight this, I’ve circled some of the damaged areas in red in both images.

We continue to plug away on the treatment of the coffin and we are hoping to soon reach the point where we can separate the lid. I will provide an update shortly about some of the more recent work we have been carrying out on this artifact!

 

 

Mystery fiber

In a recent blog post I mentioned that I am working on the painted coffin of Tawahibre, which has fibers mixed into the ground layer (gesso). In my examination prior to starting treatment, I had noted these fibers, and observed that they are present all over the coffin lid, mixed into the ground layer just below the painted surface. They are exposed in many places where there are losses-here is an image of one area where the surface of the coffin is badly damaged, revealing these fibers:

Fibers visible in the ground layer of the painted coffin lid

There are quite a lot of these fibers in some areas (as seen in the photo above), and then in others, there are very few. They are found in areas where the ground is thick and also where it is applied very thinly. They are not arranged in any particular way-they appear to have been mixed haphazardly into the ground. The fibers are light brown in color, and while most of them are very stiff, they react almost immediately to moisture, becoming very flexible when wet. I had initially assumed that these were plant fibers-possibly flax-but they always seemed a bit odd, and to be honest, these fibers remind me a little bit of sinew (animal tendon).

As I have been working on the coffin, several of these fibers “presented themselves to me” for sampling-meaning, as I’ve been working to stabilize some of the areas with these fibers, a couple became detached, allowing me to investigate them further using PLM. So far I have looked at 2 samples, and both look the same. I prepared the fibers by mounting each one on a glass slide with water. When looking at them in plane-polarized light, they look like this:

Two different fibers from the coffin ground layer viewed at 50X magnification

I didn’t really know what I was seeing-it was difficult to pick out any really distinguishable features, so I then viewed both fibers under crossed polars. This is what I saw:

Same two fibers viewed under crossed polars at 50X magnification

What the heck is that? I’ve never seen anything like this before. When I showed this to a few other people, the first reaction has been-it looks like a worm! And it totally does. This very regular banding pattern has got to be characteristic of something-I just don’t know what.

I thought I had a lead last week-I found this image in a book, showing a bundle of sisal fibers with a commonly-seen spiral element:

Sisal sample showing a characteristic spiral element. Image from “Color Atlas and Manual of Microscopy for Criminalists, Chemists, and Conservators” by Nicholas Petraco and Thomas Kubic, p. 94.

However, just last week I obtained a sisal sample from one of the Winterthur art conservation graduate students and I’m pretty sure that’s not what I have. The sisal sample looks distinctly different to me-here it is in both plane polarized light and under crossed polars:

Sisal reference viewed at 400X magnification in plane polarized light (left) and crossed polars (right). Also, note the difference in magnification between these fibers, viewed at 400X, as opposed to the coffin mystery fibers above, viewed at 50X.

For the moment, I’m stumped. But I’m continuing to investigate this and to get input from colleagues, and I’m open to suggestions/ideas! I’ll also certainly provide more information when I know more. To be continued…