More about our Predynastic mummy

Last year we posted some information about Bruce, our Predynastic mummy (and the oldest Egyptian mummy in the museum) here in the lab. Bruce has been on ongoing project, but he is often tucked toward the back of the lab unless we are actively working on him. While he’s often not front-and-center, when visitors enter the gallery and they catch a glimpse of him, they know that he’s special, even if they don’t know what he is, exactly.

Bruce on his cart, near the back of the lab, as viewed through the Artifact Lab windows.

Bruce, near the back of the lab, as viewed through the Artifact Lab windows.

As soon as he is spotted, I am often asked “what is that?” “is that a mummy?” and “what are you doing with him?”. In conservation, we are not always actively treating objects (or in this case, mummies); some of our projects involve close examination and study of objects (often referred to as technical studies). These technical studies may be a precursor to conservation treatment, but they may also be independent of treatment.

We are not currently carrying out conservation treatment on Bruce. Our focus at the moment is careful examination and some analysis, in consultation with other specialists. At the moment, we are focusing on trying to identify the type of animal hide that he’s wrapped in:

The red arrows are pointing out pieces of the animal skin bag wrapped around Bruce.

The red arrows are pointing out pieces of the animal skin bag wrapped around the mummy.

and also the animal hairs used to make the finely woven baskets included in his burial bundle:

E16229_basketsThese baskets are actually made of plant and animal fibers – the baskets are twined, and the passive elements (or warps) are made of plant fibers, while the active elements (wefts) are made of light and dark animal hairs. We know that the wefts are animal hairs based on our examination of these fibers using our polarized light microscope (PLM).

Views of the light-colored hair (left) and a cross-section of the hair (right) at 100X magnification

Views of the light-colored basketry fiber at 10X (upper right), at 50X (lower left), and a cross-section (lower right) at 200X magnification

Views of the darker hair (left) and a cross-section of the hair (right) at 100X magnification

Views of the darker basketry fiber at 10X (upper right), at 100 X (lower left), and a cross-section (lower right) at 200X magnification

Sometimes animal hair can be identified based on the features observed under a microscope, by comparing the unknown hairs to known reference samples. Some great animal hair ID sources on the web include this great resource on the FBI website and the Alaskan Fur ID website.

While we can clearly see that these fibers from the basket are animal hairs, we have not been able to identify them based on microscopy alone, so we are pursuing other analytical methods of identification, such as peptide mass fingerprinting (PMF). PMF uses a mass spectrometer to analyze the peptides in a proteinaceous sample, which can identify mammalian material to the species level using a micro-sized sample. Next week, I am attending a collagen identification workshop at Harvard, where I will learn more about PMF and its application to cultural artifacts.

We are excited by the possibilities this technique offers – being able to identify the skin(s) Bruce is wrapped in and the materials used to make the baskets found in his bundle will add to our understanding of very early technologies and funerary practices in Egypt. We will certainly share our findings as we learn more.

 

Polarized Light Microscopy

Our Conservation Department recently purchased a Zeiss polarized light microscope-”the best microscope on campus” according to the specialist who set it up for us, and who is knowledgeable about the other scopes in use at Penn. Having the nicest equipment around isn’t familiar territory for conservation labs, so we’re enjoying having this status, but more importantly, having such a nice piece of equipment to use.

Our new microscope installed in the Artifact Lab

Polarized light microscopy (PLM) is used for examination of specimens in many types of laboratories, including biology and geology labs. In conservation, we use PLM for identification of minute fragments from objects-anything from pigment particles to wood fragments to textile fibers. We also use this technique to examine corrosion products, salts, and other materials found on artifacts-all of this work helps us better understand what the objects are made of, their condition, and ultimately provides important information for making conservation treatment decisions.

For example, our Conservation Fellow Tessa de Alarcon, who is conducting a year-long condition survey of Penn Museum artifacts from Kourion, Cyprus, has been using PLM to examine salts present in ceramic vessels from this collection. Tessa is desalinating the ceramics to remove the salts, which likely accumulated in the ceramics in the burial environment and will cause damage if not removed. To confirm which salts are present, she removed samples of the salts and examined them under the microscope. Here is an image of one of the salt samples, which shows that there are 2 different types of salts present-nitrates and sulfates.

Magnified image of 2 types of salts present on a ceramic vessel from Kourion (400X magnification).

You can read more about Tessa’s work with the Kourion collection (and view a cool video clip!) here on the Penn Museum blog.

In the Artifact Lab, one of the first ways that I’ve used our new microscope is to examine fibers from a thread that detached from the fabric wrappings of the falcon mummy I described in a previous blogpost. Fortunately for me (but unfortunately for the poor falcon mummy!) there are lots of detached threads that were available to sample for examination under the microscope. Here is a magnified image of one of these threads:

A small detached thread from the falcon mummy’s wrappings (40X magnification). I noted that the thread has an “S” twist and the fibers are shiny.

Using our binocular microscope, I put a drop of water on the thread and teased out several individual fibers from the thread on a glass slide, and then covered the fibers with a cover slip.

This image shows all of the tiny fibers from the larger thread-it is important to examine these fibers individually in order to identify what type of textile the falcon mummy is wrapped in (40X magnification).

Once the slide was prepared, I mounted it on the polarized light microscope and examined it at 50, 100 and 200X magnification.

Fiber from falcon mummy textile wrappings (200X magnification)

Under such powerful magnification, it is possible to see features such as a very small lumen (central cavity) and nodes along the length of the fiber. These features are characteristic of flax fibers, and comparing my sample with known references (including in this great Fiber Reference Image Library), it was immediately clear that this is what it is. Flax is used to make linen, and since the majority of ancient Egyptian textiles are linen, I already had a good idea that this is what was used to make the falcon mummy-but this proves it!

You can see from this work that PLM is a very useful technique, but it also is important to have an idea about what the possibilities are for what your sample-background research and close examination before microscopy is essential.