for decisions over control of land and water above the level of village shuyukh. In a tribal political system, authorities at higher segment levels do not have the authority to impose decisions on local communities. Power is spread rather than concentrated. Given the fact that each irrigator is capable of handling the entire irrigation process on his own, there is little need for directed supervision or external control of the system.

The system of highland terraces in al-Abjar represents generations and centuries of investment in the land. There is not enough soil on the natural slopes for building up the terraces. Thus, soil has been painstakingly brought in, often by donkey, to fill in the terraces. The farmers here have literally carved a garden into the sides of the mountains. In al-Abjar an equilibrium has been reached between the water supply, which is constant, and the extent of cultivated land. The traditional lightweight Yemeni or, pulled by bull, donkey, or camel, is the only practical way of tilling most of the terraced plots. It would be impossible to introduce a tractor here, as is being done in the agricultural development of the level coastal area and plains of Yemen. Indeed, it is difficult to imagine ways for improving the irrigation system here.

Agricultural development policy in the Yemen Arab Republic centers on increasing water supply and introducing more sophisticated technology. A great deal of interest has been generated in the coastal region, where hydraulic pumps have been installed at wells and new barrages in wadis are being designed. There is a conscious shift, as well, away from traditional crops and toward lucrative cash crops for the national and international market. This attitude represents a dominant trend in agricultural development of Third World countries.

The emphasis on new machinery, cash crops, and experimental farms represents a potential threat to viable traditional agricultural systems such as ghuy in al-Abjar. The role of the small farmer, growing crops both for his own needs and for a regional market, is being challenged. Al-Abjar represents all that is right with traditional agri-

Suggested Reading


The regular reader of Expedition and, almost at tautology, every professional archaeologist has at one time or another experienced the spell cast over the imagination by the once-inhabited settlement mounds of early floodplain civilizations. Once teeming with thousands, they now lie dry and bare under a relentless sun. The Asian alluvium, of course, comes foremost to mind as the mother of ancient civilizations built on tells—the Sumerians, Babylonians and Harappans. But forgotten in the center of another continent entirely is yet another floodplain with hundreds of ancient tells rivalling those of Asia in area and in clues to the emergence of city life.

French officers in the vanguard of colonial forces penetrating the interior of West Africa filled pages of official dispatches with descriptions of enormous abandoned mounds littering the Niger River's broad interior delta. To late 19th century Europeans, this was eloquent testimony to centuries of depopulation, political
Al-Sa’di records local traditions of a time when the plains around Jenne were so densely populated that pronouncements and summons from the town’s sultan were delivered hundreds of kilometers into the interior simply by shouts repeated from one village to the next (al-Sa’di 1964:14-25). This was a faded time when peace reigned and both Timbuktu and Jenne grew wealthy on commerce in gold from the forests to the south. But by al-Sa’di’s day even the locals had forgotten the age of the tells along the Niger River. Even less was known about the communities which had occupied those mounds.

During the decades of stupendous discoveries at Mesopotamian mounds, the French colonies of sub-Saharan Africa attracted few archaeologists. A few trained prehistorians travelled from the Institut Français d’Afrique Noire in Dakar, Senegal, to make surface collections at a handful of tells. In 1907 a military administrator, Lt. Desplagnes, conducted the only complete excavation of a mound along the Niger (el-Oualadi) excavations, Desplagnes 1931). That mound turned out to be a huge independent Republic of Mali. The meager national budget could support little archaeology. The plains of the Niger, as part of the great semi-arid belt south of the Sahara, suffered an enormous reduction in human and livestock population during the Sahel Drought from 1967 to 1974. Archaeology was further postponed. The Sahel Drought dramatically illustrates the unpredictability in the midst of plenty which today characterizes life on the Niger floodplain. Plenty is an ancient aspect of this floodplain, which in the distant past supported a population many times greater than today; ‘unpredictability’ may be a more recent aspect.

In the middle of the Sahel, the Niger flows across a great alluvial depression, called the Inland Niger Delta, dominated to the south by Jenne and to the north by Timbuktu, where the river turns from its apparent suicidal rush into the Sahara to flow southeast towards the Gulf of Guinée. The Niger River annually floods some 80,000 square kilometers during the winter inundation, which nourishes a large crop of native African rice and sends millions of fish into the hundreds of Inland Delta streams to be caught by the local Bozo fisherfolk. (A succulent fish called ‘capitane’ [Lates niloticus] from the region is flown fresh to the most elegant tables of Paris.) The area produces an abundance of cereals, but the scheduling of crops is tenuous; early rains which enable farmers to plow the sun-baked alluvium may be insufficient or tardy, or the flood may arrive too late to nurture the seedlings. Early or high floodwaters invite schools of fish to feast, declimbing the rice fields (Gallais 1967). A flood abates in the months of January through April, the pastoral Fulani drive thousands of cattle, sheep, and goats from southern Saharan pastures into the grassy meadows of Inland Delta backswamps. This is the beginning of the summer dry season in the Sahara. Without the reserves of floodplain pastures the Fulani’s livestock would perish—as they did by the thousands during the Sahel Drought. In an ironic turn, many cattle driven into the region in recent years have drowned in swamps and river beds still containing deep floodwaters. But when the rains and the floods arrive as expected, the land is bountiful. The floodplains around Jenne produce an ample harvest which has provisioned southern Saharan towns, Timbuktu in particular, in a riverine commerce in fish, rice, and cattle flesh since at least al-Sa’di’s day. And, as we shall see, this trade must have been flourishing long before his time. This is the context within which we must consider the tells that dot the Jenne region by the hundreds. The number between Jenne and Timbuktu (never more than a thousand, ask cariously inventoried) must run to the thousands. We chose to concentrate on Jenne, sister city to Timbuktu and its principal partner in the medieval trade exchanging West African gold for Saharan salt and Mediterranean manufactures (Novell 1986). As we perused aerial photographs of the Jenne region before our first field season in 1977, an initial possibility dominated our thoughts. If all these tells had been occupied contemporaneously, the Inland Delta’s economic potential had at one time been superbly exploited. The mound displayed great differences in size and a distinctive clustering tendency. What clues did these clustered tells hold about the beginnings of urban life here?

Our 1977 field season began with a two-part inquiry. Jenne was already a city at the moment of its first historical mention in late medieval times. How old was this city, still thriving today with 10,000 inhabitants? No city emerges in isolation: what role did Jenne’s hundreds of neighboring tells play in its evolution and why do they now lie abandoned? Asking these questions in tandem, we believe, is the greatest single improvement in contemporary urban archaeology. This assertion deserves brief explanation as it lies at the heart of our research strategy.

In the earlier days of tell archaeology—the ‘Heroic Age’ of Layard, Botta, Woolley and other pioneers—excavations focused on the principal mounds, generally concentrating on central public structures such as ziggurats or palaces. This resulted in a very lopsided view of the sites themselves, and even more so the processes of early urbanization. For cities did not grow in isolation, but emerged from agricultural villages and antecedents which can be understood only through a regional study. Principal settlements flourished because of a supporting network of smaller towns, villages and hamlets within their sphere of influence. Regional connections supported these cities with staple crops, materials for its industries, enormous labor reserves, and markets for the diverse products of its specialized population. Accepting this concept of the regional roots of urbanism, it becomes not just appropriate, but necessary, to ask “what role did the hundreds of neighboring tells play in Jenne’s evolution?”

Jenne’s regional roots extend throughout the complex Niger floodplain. The landscape over which Jenne and nearby tells are distributed is what geomorphologists call an anastomosing floodplain. The Niger and its major tributary, the Beni River, converge not far away. In the extremely flat, lowlying floodplain between them a myriad of small streams, or distributaries, form a fine capillary system between the main riverine arteries (R. McIntosh n.d.). Today, farmers in the interior transport their pro-
duce along these distributaries to Jenne for warehousing and eventual shipment down river to Timbuktu. In the past, these streams played an even greater role, to judge from the number of tells along channels now choked by dune sands or silt barriers. Jenne and a particularly high density of large tells lie on the banks of the Souman-Bani, the principal distributary linking the Bani and the Niger. Smaller, but still substantial mounds loom over more interior streams. The preference for settlements on these different landforms—dues and channel levees permanently above flooding, floodplain soils suited for rice, or deep basins useful only for fishing and dry-season pasturing—provided the initial clue to occupational specialization contemporaneous with the emergence of Jenne-jejo.

Survey of the region proceeded in two stages, in 1977 and 1981. Aerial photographs and satellite imagery simplified mapping of landforms and soil units. Once in the field, the discovery that tells on the floodplain were one hundred percent visible on these photographs allowed a randomly-selected sample of mounds to be visited and surface-collected. Sites on dunes or levees—that is, above the floodplain—were less easily detected for you could not tell from the air if these basins were divided into transacts, a sample of which we then walked in search of ancient remains. During the first season in 1977, cataloguing over 400 mounds during survey of 1,100 square kilometers and excavation at the ancient site of Jenne-jejo provided the first of several unexpected lessons of Inland Niger Delta settlement. Stone Age peoples apparently avoided the Inland Delta. More intensive survey of a smaller region in 1981, a search of over 20 kilometers of rivercarts, and excavation at another mound confirmed the absence of Late Stone Age occupation. This completely contradicted our expectations. The Sahara, once a pastoral haven for Late Stone Age fisherfolk and herders, had experienced progressive desertization since the 6th millennium B.C. (G. McIntosh and R. McIntosh 1981:602-606). It seemed reasonable to presume that the Inland Delta had been a natural magnet for these people at least from the 2nd millennium B.C., when aridity became pronounced. So far, there is no trace of them. It may simply be that remains of Stone Age camps are buried far beneath alluvium or that widely meandering streams erased all traces of their presence. However, it is equally possible that the Inland Delta until the last millennia B.C. was inaccessible except by boat or uninhabitable due to the presence of water-borne or water-associated diseases affecting cattle and humans. The range of the invidious parasitic diseases that cause bilharzia, river blindness and sleeping sickness may have extended into the West African Sahel, well to the north of their present home in the savannas (Smith 1979:359-360). Some geomorphologists have even claimed that the Inland Delta was for millennia a vast shallow lake (Tricart 1965:36-37, 43). Whatever the reason, the evidence is quite firm. The first peoples to penetrate the region of Jenne were iron-using farmers, fishermen, and herders. The settlement which began during the last half of the last millennium B.C. was no tentative trickling of pioneers. The Inland Delta was the scene of a prehistoric land rush.

Imagine yourself an early colonist looking for the first time upon an uninhabited plain of rich grasses, as you might see them in the clay basins supporting the dry season pastures and the only ponds available year-round for fishing, drinking, bathing, etc. Where are the clay basins, the largest of which are the finest rice-growing soils, those inundated to about 3 meters each year. Near this idyllic scene are olives appropiated to maintain villages permanently above flood high-stage. However, for reasons not yet understood, higher land such as dunes and levees was almost without exception avoided until the beginning of the present millennium. Nevertheless, the first colonists persisted on the floodplain. Their final solution to the dilemma was to found villages on mounds—tells built up of centuries of domestic debris and collapse of mud houses constructed of the nearby alluvium. Perhaps the high-flood months were spent away from the new villages until sufficient height was reached, or perhaps the floods of that period were generally lower (evidence discussed in R. McIntosh n.d.). Whatever the details of early occupation, it was highly successful. Hundreds of tells were established at the clay basin/rice lands boundary, apparently within a few centuries of the opening to settlement of the Inland Niger Delta. Of all sites catalogued within the 1,100 square kilometer survey region, 34% were located near clay basins and paddies. But fully 55% of all sites were within channels of distributaries. These sites certainly had year-round access to water and to fish runs, but why would the inhabitants have chosen to construct settlement mounds in the very place where floods would be most destructive?

Again, imagine yourself an early colonist of the Inland Delta. Many localities in the
floodplain have excellent potential for fishing, farming, or pastoralism but, more importantly, all are absolutely lacking in certain resources critical to the Iron Age way of life. Imported items found during excavation demonstrate those resources which the floodplain could not provide. Evidence from the very lowest levels of several sites shows that, as early as the last few centuries B.C., the inhabitants conducted trade with places beyond the Delta for a variety of utilitarian and decorative items. Traffic was in iron ore [a medium-carbon steel was smelted and refined, apparently on industrial scale, as early as 200 B.C. at the site of ancient Jenne; R. F. Ty reclote 1982: personal communication], sandstone grinders (which were imported in a number of standardized shapes and sizes), and exotic volcanic stone required for production of beads and other ornaments. The nearest source for any of these materials was at least 50-75 kilometers away. These were heavy, bulky materials, and the amounts discovered at Inland Delta sites imply an organized, voluminous transport and exchange (S. McIntosh and R. McIntosh 1989: part ii, 444-461). By about A.D. 400 copper from Saharan sources over 1,000 kilometers away is found at the site. Salt, another distant Saharan material for which there has always been a thriving market in the Sahel, presumably accompanied caravan shipments of copper, although archaeological evidence of this necessary mineral is notoriously elusive. And by A.D. 600-600 we find ornaments made of gold from mines far to the south in West Africa.

In exchange for these items the inhabitants of the channel tells undoubtedly exported the same things that ancient peoples of Mesopotamia or the Indus exchanged with their distant suppliers: vast quantities of food and the specialized products of their manufacture. In the case of the Inland Delta trade this is still conjecture because no modern investigations have been conducted at appropriate exterior sites (see Szu mowski 1985). Nevertheless, the first historical references and local traditions emphatically state that settlements such as Jenne became important in the first place because they controlled an ancient trade with the fringes of the Inland Delta, and only later with the other towns farther down the Niger River. Thus trade necessarily accompanied the regional land rush. In this pursuit of commerce lay the seed of the next settlement transformation—the rapid emergence of the true city.

A legacy of the mass circulation, high excitement reporting of the archaeological discoveries during the 'Heroic Age' is the romantic image of the abandoned city mound. Looming over a parched and barren plain, it astounds as much by its massive size as by the tumbled palaces or eroded ziggurats still highly visible on its surface. Rapid site expansion also characterized the urban transformation in the Niger floodplain. The accompanying photographs illustrate the evidence for this: excavation at the principal tell in the region, Jenne-jeno, reveals a reasonably complete picture of the city's evolution. Jenne-jeno, or "ancient Jenne" in the Songhai language, is the ancestor of modern Jenne and occupies the same distributary channel merely three kilometers away. Founded by the 3rd century B.C., Jenne-jeno expanded to its minimum twelve hectares by about A.D. 50 and was a settlement of thirty-three hectares by sometime before A.D. 600-600. By this last date Jenne-jeno was enclosed by a 3.3 meter wide mud-brick wall of about 2.0 kilometers circumference—the settlement was of true urban dimensions.

The dramatic expansion of the principal site of Jenne-jeno is just one aspect of the urban transformation, however. During the early period of urbanism here, starting around A.D. 400, cities were clustered settlements. As Jenne-jeno expanded,
smaller communities sprang up around it. Jenn-e-jeno was one site in a cluster of twelve sites, each within a half kilometer of the next. This whole cluster is still recalled in the oral traditions as the "Jenn-e-jeno" of the past. Within the ancient Jenn-e-jeno cluster is another site test-excavated in 1981, Hambarkeletol. Founded by the 2nd century A.D., Hambarkeletol grew space with Jenn-e-jeno and its maximum expansion (9 hectares) was reached at the same time as Jenn-e-jeno's. At the climax of these two sites they had begun to merge. Evidence is growing that the other sites of the ancient Jenn-e-jeno cluster shared parallel histories.

Early urban clustering was not confined to Jenn-e-jeno. Only four kilometers down the same channel is another massive clustered unit of seventeen sites, ranging in size from 12.4 to less than 0.05 hectares. Eventually, clustering became the order of the day on all floodplain soil units and land forms within the region. Clusters deep in the interior were limited to two or three, or, infrequently, up to six sites. But in major and minor distributary channels three to ten settlements, clustered around a principal site of 10 or more hectares are a common pattern. But how can we know the clusters were true units, and not just a series of sequentially-occupied community units? And if a true, contemporaneous unit, what was the purpose of this striking settlement pattern?

The answer to the first question makes the second all the more intriguing. During the 1981 field season we again used probabilistic sampling techniques to select half the individual sites in each of seven clusters within a four-kilometer radius of Jenn-e-jeno for intensive surface collection. Seven other isolated sites were studied. We estimated the date of site abandonment by comparing surface ceramics with the 1,500-year stratified pottery sequence established at excavated sites nearby (at the type site of Jenn-e-jeno, for example, an internally consistent series of 26 radiocarbon dates anchors that sequence in time). Without exception, all sites within each cluster had been abandoned within a short span. Contemporaneous abandonment implies contemporaneous rather than sequential occupation. Of thirty sites dated by this method, twenty-five were abandoned within two or three centuries of the desertion of Jenn-e-jeno at about A.D. 1300. Of course, we will not know without excavation just when these satellite mounds were founded or, for that matter, whether occupation was continuous, as it appears to have been at Jenn-e-jeno. Test excavations at Hambarkeletol, and the height to which debris had accumulated at all sites, suggest a massive population buildup in the region contemporaneous with Jenn-e-jeno's expansion. If high settlement density was an integral feature of the first colonization of the Inland Delta, why did it take the form of multiple satellite sites?

The 1981 season gave us some clues to the clustering question. Not all sites in each cluster are uniform in all artifacts present, although the uniformity of ceramics—the dating markers—parallels precisely what archaeologists find repeatedly in integrated urban regions. Patterns of differences in other artifacts can be deciphered fully only when a large enough sample of sites can be excavated. Nevertheless, some gross trends are apparent even now: these trends point clearly to differences of function among sites within clusters.

Iron smelting is an example of a special activity found at a restricted number of sites. Evidence of on-site smelting occurs in various forms; surface occurrences of scattered slag in significant density, discrete slag piles, furnace and tuyère parts, and piles of ore. In light of the fact that all ore had to be imported from outside the Inland Delta, it is noteworthy that all clusters surveyed in 1981 have at least one site with two or more pieces of primary evidence of smelting. Large clusters may have several. The presence of smelting appears to be correlated with site size. Sites 0.05 hectares (500 m²) or less never have smelting evidence. It is also rare at sites measuring 1.0-5.0 hectares. By contrast, smelting debris is abundant at all sites 0.5-1.0 hectares in size and at every site larger than 5.0 hectares. Crude as these observations may be, they clearly point to systematic differences in tasks carried out—and presumably to ‘communities’ responsible for such tasks at these sites. Systematic patterns allow prediction: in this case, sites with in situ evidence of smelting can be predicted by the number of sites in a cluster and by their size.

Are we perhaps seeing in these clustered sites the earliest expression of the region’s remarkable heterogeneity? From the earliest historical documentation to the present, Jenn-e-jeno has been a town of multiple ethic
groups engaged in different subsistence occupations (fishing, farming, herding, trading) supporting a diverse economy. The earliest settlements were small and scattered, but over time they began to cluster around larger centers.

By the end of the 1st millennium A.D., some urban centers had become very large indeed. The ancient Jenne-Jeno cluster of sites—known as the "City of Gold"—had a population of about 5,000 people. This city was surrounded by a wall and had a large market square where merchants from all over West Africa traded goods.

Isolated sites with a narrower range of size? We believe that other, smaller, settlements were also involved.

By the early 2nd millennium the sphere of West African trade, with Jenne-Jeno as a primary participant in that trade, expanded beyond the great desert to embrace North Africa. By the mid-13th century the region was brought under the hegemony of the Islamic Empire of Mali. New currents of political centralization swept the Delta and a new unifying ideology, Islam, spread rapidly. Islam had begun to penetrate parts of West Africa centuries before as a rather exclusive religion of kings, courts, and wealthy merchants. According to local traditions, the King of Jenne converted to Islam around A.D. 1250. By the 15th century, when the city first appears mentioned on a written page, Jenne and its sister city, Timbuktu, were centers of Islamic learning. Arabic manuscripts rivalled gold as the items of greatest value transported by camel caravan in the trans-Saharan trade between these cities and North Africa. Here, at last, were the centralizing forces missing earlier. Illustrating the power of the new political loyalty, one local ethnic group, the Nono, began to call themselves Marks—the "Man of Mali." So powerful was the appeal of the new religion that, throughout northern West Africa, many communities abandoned venerable villages inhabited by their ancestors for new localities populated by pagan practices (R. Mauny 1978: pers. comm.; R. McIntosh and S. McIntosh 1981:19-21). Oral traditions of present-day Jenne record a similar transformation of identity with the coming of Islam and a similar disdain for the beliefs of the ancestors at Jenne-Jeno. Nevertheless, like al-Sa'di, modern Jenneños long for the commercial Golden Age to which the abandoned towns give eloquent witness.

Archaeology is perhaps the most ritual-bound of the sciences. At the end of the excavation season the research assistant who supervised work on one of the half of the large unit burying his boots. Back-filling the unit, like its excavation, was done by hand and took ten full days. We took from the earth and we gave back to it.
Volunteers

ROBERT H. DYSON, JR.

The many volunteers who participate in the wide range of activities of the University Museum form an indispensable resource in carrying out the Museum’s dual mission of research and public education. Their tasks have included working in store-rooms, archives, installations, computer-izing the inventory, typing, filing, drawing, stringing boards, reorganizing collections, guiding visitors, and visiting schools on our behalf.

MOBILE GUIDES

Fanchon Apel
Phyllis Brogdenhoff
Ruth B. Burns
Henry A. Castleberry
Ellen Crow
Mark Deuff
Cheryl Cunningham
Elizabeth Eissor
Marilyn Finkel
Gerdute Fuchs
Terri Gordon
Bernyly Grant
Julia Hadad
Joyce N. Halle
Barbara Heller
Ellen Hyams
Riley Jenkins
Marguerite Johnson
Jean Klein
Emily Levy
Harrerin Lichtenstein
Ada Lloyd
Louise McGowan
Caroline Nassau
Lilia Orr
Jackie Patilrko
Maureen Taylor
Myrtle S. Robbins
Sylvia Reuben
Jean Spalding
Nancy Stenshoven
Mary Lou Sullivan
Barbara Van Etten
Anne Walowitz
Elisabeth West
Doris Wilson
Brinda Ziaiyal

"MUMMY DUSTERS"

Linda Ball
E. Natalie Birkinbine
Patricia T. Birkinbine
Julie Deansy
Milline Firestone
Edward Firestone
Jill Jackson
Mary Jordan
Lucy Megrail
Emanuele Melwerk
Joyce E. Monvey
Jane Silcox
Joyce Simon
Cecelia M. Tiock

GENERAL VOLUNTEERS

Tamara Alexandrova
Leonard Berg
George Brooks
Lloyd Daly
Charles Dicterew
Helen Dorrkin
Ann E. Eger
Beryl Felshar
Mary Ann Folkley
James L. Flanagan, Jr.
John Hermann
Frederick Kneen
Norton A. Kent
Virginia Krie
Felix Kropin
Charlotte Kupal
Dwight McNair-Scott
Barbara Roberts
Margaret Roberts
Catharine Rosen
Billie Ruesenberg
Herriot Shaw
Bara Saliman

University Museum Telephone
Area Code 412
General Information 899-4000
Director’s Office 899-4001
Membership Office 899-4028
Public Information Office 899-4045
Education Department 899-4015
Public Programs Office 899-3004
Events Information 223-7777

Beginning with this issue of Expedition and once a year thereafter, we should like to recognize all those who provide their time and effort as part-time volunteers in the Museum. In this first public appreciation we wish to mention Craig Biddle, Douglas Gould, Virginia Bega and the late Mr. and Mrs. E. N. Brandy, who after many years recently moved on to Volunteer Emeritus status. The Museum is greatly indebted to them for their years of dedicated service.

Acknowledgments

Research in the vicinity of Jenne was conducted with the cooperation of the Ministry of Sports, Arts, and Culture and the Institute of Human Sciences of the Republic of Mali. The encouragement and cooperation of Dr. Alpho A. Konaré and M. Khass Sanogo, Directors of the Institute in 1977 and 1981 respectively, were central to the success of the two field seasons. In 1977, the National Science Foundation, American Association of University Women and the Crowther-Benyon Fund (Cam-
bridge University) provided funding. The 1981 research was supported by grant BNSO-30080 from the National Science Foundation.

Bibliography

Boivin, E. M.
1968
Oxford: Oxford University
Press.

Chang, K. C.
1974
"Urbanism and the King in Ancient China,

Desplagnes, L.
1931
"Pamulte du Tumulus de Kassouff (Soudan), Bulletin of the Institut
Fondamental d’Afrique Noie (B) 13:115-93.

Gallais, J.
1967
Fondamental d’Afrique Noie No. 78. Dakar: I.F.A.N.

Samouwos, G.
1928
"Fouilles a Nantaka et Kolebik (region of Mergui, Southeast Asia)". Notes Africaines 70:33-8.

TieURT.
1955
Reconnaissance Geologique de la
Vallée Moyenne du Niger. Memoire de l’Institute
Fondamental d’Afrique Noie No. 72. Dakar: I.F.A.N.