Introduction
The Origin and Growth of a Research Focus—Agricultural Beginnings

ROBERT J. BRAIDWOOD

Let us first agree that our concern here is only with what happened in southwestern Asia, to its broadest conceivable margins. There were certain other regions of the world wherein independent agricultural beginnings were made.

Secondly, I beg indulgence for what may sometimes seem pure immodesty. Mrs. Braidwood and I did undertake the first field project specifically pointed towards reclaiming evidence of a very early food production in the Near East. We were convinced that there was a critical gap in the excavated evidence for later southwestern Asiatic prehistory. That we were the first to begin such field work was overwhelmingly the result of pure good luck. It involved: 1) Our own pre-World War II field experience, which came soon to bear on late aspects of the prehistory of northern Syria, now the Turkish province of Hatay (the Amouq). 2) Our graduate education and early teaching experience in the Oriental Institute and the Department of Anthropology at the University of Chicago. Participation in Henri Frankfort's magnificent seminar and stimulation by Sol Tax and W.M. Kromer in the design of a new anthropology course were critical elements of our formation. 3) Again, there was the sheer good luck that allowed us to return to the field in 1947, to work a site on the Zagros slopes (Jarmo; Figs. 1, 2). The site itself was not selected by us, but by official colleagues and friends in the Iraqi government's antiquities service, who understood what we wanted. 4) The unfolding of critical support, particularly from the National Science Foundation in the mid 1950s, which after all was a natural sciences field staff of effective and interested colleagues.

It was, of course, primarily the ideas of that fascinating prehistorian V. Gordon Childe, about the great importance of the appearance of an effective food-producing way of life, which set the stage for our post-World War II field activity in the matter. (In a way, ours was the role of field contractors for the bridge that Gordon Childe had designed.) Childe's 1935 presidential address to the Prehistoric Society and his 1939 book Man Makes Himself show how his understandings were already in quite clear focus. He himself, however, credited Elwood Smith, Harold Peake, and others with having stimulated him. His first (1928) edition of The Most Ancient East does follow the theme set in Peake and Flenley's 1927 Corridors of Time, III, somewhat closely. Given what little real evidence was then available to them, Peake and Flenley did a most creditable job. It is interesting to contrast their 1927 attempt with that of the distinguished Oxford historian J.J. Myres in his first two chapters of the 1923 Cambridge Ancient History. I, Myres wrote around the subject a great deal, tried to blend in speculations about anthropometry, with links to "long heads" or "round heads," but did not bring the matter of agricultural origins into real focus. In Myres's earlier (1910) Dawn of History, concerning times and regions which certainly should have invited clear thought in the matter, there is virtually nothing at all of interest to the point of agricultural origins. It would be an interesting but massive job to reach further backwards in time, regarding speculations about the importance and first appearance of food production. In the first few pages of his recent (1976) little book, Food Production and Its Consequences, P.E.L. Smith suggests we would even have to begin with the Book of Genesis. There would also be trouble over what real meanings and interests we might assign to the words used by various subsequent historical figures. Smith notes, for example, Rousseau's 1750 attempt to link the consequences of agricultural beginnings with the introduction of the idea of property and the necessity to do work. Here is that old "by the sweat of thy brow" theme. Smith also—has others—links Childe's "Neo-lithic Revolution" ideas back, by way of Marxist thinking, to Engels and Lewis Henry Morgan. There must be the grist for several long Ph.D. dissertations here!

But back to the early post-World War II years. The work at Jarmo, and Bruce Howe's at Karim Shahir and Palagawra, did not at first stimulate other field work specifically pointed at the gap in our so-called gap chart of 1945. We may certainly assume that Kathleen Kenyon went to Tell-es-Sultan because of its identification with Biblical Jericho. She did, however, resume work in Garstang's earlier soundings as well as in his later levels. The Soleykis made exposures at Zawi Chemi Shanidar to elaborate their understanding of materials found in the upper levels of their deep exposure at the nearby Shanidar cave. To our minds, Jean Perrot's 1954 discovery of Mallaha was the next really important specifically focused step. It showed that the Natufians were not bound to have been caves dwellers alone, and that more evidence of them might well add more substance to the notion of a level of incipient food production.

By 1960, field activity more or less directly focused on agricultural beginnings was becoming fairly common, both along the Levant and east of the Euphrates. (Should we perhaps even say it was becoming fashionable, and to what extent did this fashion first depend on the availability of financial support sought in a "scientific" rather than a "humanistic" jargon?) In more recent years, the early village and incipient range of materials have also begun to be encountered, in understandably restricted exposures, in the floodplain salvage regions, especially along the Euphrates, and in the Hamrin region in Iraq.

I shall not try to approach that sticky wicket of the most recent attempts to explain just how and why food production and an effective village-farming community way of life actually came into being. Our feelings are that there is still far too little evidence, especially east of the Euphrates, representing the range of development we ourselves choose to call incipience (others may, if they wish, of course call it...
"epipaleolithic" or "mesolithic"). With every rough allowance for what recalibration radiocarbon age assays may eventually allow, perhaps the time range involved for the sub-era of incipience may have been ca. 20,000 to 8,000 B.C. Perhaps more of the now so-called marginal regions may have been involved than we first had reason to believe. The primary level or sub-era of the effective village farming community followed, over the next two thousand years, ca. 8,000 to 6,000 B.C.

Naturally, echoes of earlier notions of our own now amuse us. How much can still be left of that "hilly flanks natural habitat zone?" At least it was field companions of our own, Herbert Wright and Willem van Zeist, who established the real Zagros vegetational history. Incidentally, may I recommend a look at Wright’s and Charles Reed’s chapters in the volume Prehistoric Archeology Along the Zagros Flanks (1983). Our 1963 Taurus hill flanks survey was either too incomplete or too high (we suspect both) to yield evidence we could understand as of the incipient range. Given the now available suggestions from the salvage exposures along the middle Euphrates, both in Syria and Turkey (as Gil Stein reports on here), we would love to inspect the final Taurus piedmont, with its numerous spring heads, east and west of Mardin. This was a restricted military zone during our 1963 survey, and we understand that it still is so. Indeed, thinking such thoughts, Linda and I could well wish for another score or so of field years, if only that part of the world were more tranquil.

I have already called attention, elsewhere, to how Charles Reed ends his twenty "culpitated conclusions" to the massive Origins of Agriculture symposium volume of 1978. His twenty-first conclusion is "Many unsolved problems remain."

Çanlıca in southeastern Turkey. In this photograph, taken in late June 1986, the excavated area has been covered with earth to protect it from erosion by winter rains and wandering herds of cattle. The rolling plain that surrounds the site is intensively cultivated today, but was forested when the site was occupied ca. 7000 B.C. The mountains in the background are part of the Taurus range. (Photograph by Gil Stein)

Çanlıca: air view in 1981. Some of the cell plan buildings shown in Figure 5 have been removed, exposing the earlier grill plan phase lying beneath. Near the center of the excavation in the foreground is the unique "terrazzo building." The latter consists of a single large room (interior dimensions: 7.5 x 9.8 m), with a floor made up of salmon colored chips of stone set into a cement-like matrix and smoothed. (The dark area cutting across this light colored floor is a pit cut in later times.)

Çanlıca: air view in 1973. The site is adjacent to a small stream which separates it from an unusual rock formation jutting up out of the plain. Within the excavated area, stone foundations from two types of rectangular building are visible. The grill plan buildings have a series of parallel foundation walls along the entire length of each building; the heat preserved of these structures had a plaster floor, presumably supported by wooden beams placed across the short spans between walls. It has been suggested that this form of construction, which creates narrow passages for the circulation of air beneath the floor, was a means of keeping the interior of the building dry during the damp winter months. The stone foundations of cell plan buildings (characteristic of the latter part of the occupation of the site) form six to nine small areas or "cells" arranged in two rows. It is not yet known whether these cells represent the actual rooms of the building or sub-floor spaces analogous to those in the earlier grill plan buildings.

Çanlıca: stone slab with a human face carved on one edge. This artifact, preserved to a maximum length of ca. 70 cm, was found in the "terrazzo building."
Excavations at Çayönü

Robert Braidwood’s most recent research has been in southeastern Turkey where he is co-director with Halil Insel of the Joint Prehistoric Project, sponsored by the Prehistoric Section of Istanbul University, the Oriental Institute of the University of Chicago, and Karlsruhe University in West Germany. Excavations at the early village site of Çayönü have been carried out from 1963 to the present (Fig. 4). This settlement was occupied from ca. 7230 to 6700 B.C. by people who raised domesticated plants such as wheat, peas, and lentils. With the exception of the dog, however, they did not raise domesticated animals until late in the site’s history, and their meat came from the hunting of wild animals such as cattle, sheep, goats, and pigs.

The area of the site is estimated at six to seven acres, of which ca. 10 percent has been exposed through excavation. The architectural remains consist primarily of residential buildings (Fig. 5), but three communal structures have also been identified (Figs. 6, 8). Although the people of Çayönü had not yet adopted the use of pottery, they produced tools made of flint and obsidian (a volcanic glass). Most surprising was the use of copper, presumably obtained from the nearby source at Erğani-Maden. The metal was shaped by heating and pounding to make pins, hooks, reamers, and beads. Analysis of these artifacts has been undertaken by Dr. Tamara Stech of MASCA. M.M.V.

Robert J. Braidwood began his academic life as a student in the architectural college of the University of Michigan. After a trip to Iraq as an archaeological surveyor and draftsman in 1931, he was “hooked on archaeology,” and two years later he joined the staff of the Oriental Institute of the University of Chicago. Appointed to the faculty of the Institute and the Department of Anthropology in 1945, he is now professor emeritus. His initial field research, carried out in the Amuq plain of modern Turkey from 1933-1938, remains a critical building block for our understanding of the prehistoric cultures of Anatolia and Syria. In 1947 he began the Iraq Jarmo Project, the first of a series of research programs designed to gather information on the problem of agricultural origins in the Near East. This research has not only provided data on a previously unknown period in human prehistory, but has structured the direction of research by two generations of scholars.

Bibliography


Grierson, Philip E. 1928 Food Production and Its Consequences. Menlo Park, Ca.: Cummings.


The original Çayönü staff: Linda S. Braidwood, Bruce Hale, Robert J. Braidwood, Halet Camel.