Party Time or New Photo Light?

By Tessa de Alarcon

The conservation department recently acquired a new light for multi-modal imaging – an ADJ MEGA PAR Profile Plus (one for use at the conservation lab annex and one for the museum main lab). The MEGA PAR is a tunable LED light source, with 64 different color channels. While not designed for analytical imaging, it provides a bright and large spot size that we can use for visible induced infrared luminescence (VIL) imaging of Egyptian blue. It will also be something we can use to test out other imaging methods in the future. Taking VIL images is not new to the lab, but the light source we had been using stopped working and we needed to replace it. We are grateful to Bryan Harris for making the purchase of the new equipment possible.

The spectralon and the new MEGA PAR Profile Plus light (right) and the new equipment in use (left)

Along with the new light, we also acquired a new reference standard, a 99% reflectance spectralon. This standard is critical for developing methods and standard procedures for imaging in the lab. In this post I am going to show an example of how this standard can be used and how I developed a protocol for VIL imaging with the MEGA PAR light.

Set up for round one testing: Egyptian green (left pigment sample) Egyptian blue (right pigment sample) and a V4 QP grey scale card.

Since the MEGA PAR light is new, one of the first things I did when it arrived (after unpacking it and reading the instructions of course) was run a variety of tests on known reference materials to see what settings might work for creating visible induced infrared luminescence images of Egyptian blue. As part of that process, I set up a grey scale card (QP card V4) and two reference pigment samples, Egyptian blue and Egyptian green (both from Kremer pigments). I chose these so I would have a known pigment that should luminesce, the Egyptian blue, and one that should not, the Egyptian green. Using the department modified full spectrum camera, I took a visible reference image of the known pigments and the QP card using our regular fluorescent photo lights and a visible bandpass filter over the camera lens so that I could have a normal color image.

Screen shot of thumbnail images of the round 1 testing

Then I captured a series of images using the same set up but replacing the visible band pass filter with an 830nm long pass infrared filter so that I could capture images in the infra-red, with the fluorescent light turned off and the MEG PAR turned on. Each of the images I captured were with the same settings on the camera and with the MEGA PAR light in the same position, just going through each of the 64 color channel options.

Screen shot of Adobe Camera RAW showing the process for evaluating the response of Egyptian blue to each setting

I converted the images to grey scale adobe camera RAW by sliding the saturation level from 0 to -100, so that the red, green, and blue values (RGB) would each be the same. I then used the dropper tool to take a reading over where the Egyptian blue standard is in each image and recorded the number. The higher the number, the brighter the luminescence.

Set up for round 2 testing with the Egyptian blue pigment sample (top left), the Egyptian green pigment sample (below the Egyptian blue), the 99% reflectance spectralon standard (right), and a V4 QP grey scale card (bottom).

After doing that I had a reduced set of options that produced good luminescence in the Egyptian blue for a second round of testing. For round two I did the same thing with the more promising group, but also included in my images the 99% reflectance spectralon standard so that I could check and verify that the light is not producing infra-red radiation. If there is any infra-red, than the 99% reflectance standard should be visible. None of the second round of options showed any infra-red. While any of them can be used for VIL, CL08 gave the strongest response.

Screen shot of round 2 testing evaluation

After developing a working set-up, I did a test in the photo studio using an object that I knew had Egyptian blue, and the standards. I captured a visible image with the modified camera with the visible band pass filter and the fluorescent photo lights, and a VIL image with the 830nm long pass filter and the CL08 setting on the MEGA PAR. The false color image was created by splitting the color channels on the visible image in photoshop, discarding the blue data, and putting the VIL data in the red channel, the red visible data in the green channel, and the green visible data in the blue channel. As you can see the spectralon is not visible in the VIL image meaning there is no IR radiation being produced by the MEGA PAR light.

Images of E12974 with a visible image (left), a visible induced infrared luminescence image in the center showing Egyptian blue in white (center), and a false color image showing Egyptian blue in red (right).

After all this work, I had an opportunity to see how the new light would perform in less than ideal settings. I have been working on a study of one of the coffins in the collection, 2017-20-1.3, to examine the coatings and pigments. VIL is the perfect method of identifying blue areas on the coffin but the coffin is too big to fit in the department photo studio. The set of images below were taken in the Artifact Lab (our public lab in a gallery space) where there is IR from the windows (daylight) as well as from the gallery lights. I hoped that a short exposure with the new very bright MEGA PAR would reduce the effects of IR in the image. As you can see in these photos below, the 99% reflectance spectralon is slightly visible but not as clearly as the Egyptian blue on the coffin. These results are much better than what we used to get in the Artifact Lab using our old light, so I am very happy with these results.

Detail from the coffin 2017-20-1.3 with a visible reference image (left) a VIL image with Egyptian blue in bright white (center) and a false color image created by combining channels from the visible reference image with data from the VIL image resulting in the Egyptian blue showing up as red (right).

Special Photography for Larger Objects: Photogrammetry

By Christy Ching

Conservation Technician Christy Ching photographing the underside of an Egyptian coffin 2017-20-1.3 for photogrammetry.

One project I have really enjoyed working on as a pre-program conservation technician is documenting larger objects for a process called photogrammetry. Photogrammetry is a technology that gathers spatial and color information of an object from multiple photographs to form a geometrically corrected, highly detailed, stitched image called an orthomosaic. Essentially, photogrammetry creates a distortion-free, three-dimensional model of an object based on two-dimensional photos of every surface photographed in sections. 

Left: Four photographs of an ancient Egyptian coffin lid L-55-16B at various angles, which were used to create a 3-D model. Right: 3-D model draft of L-55-16B.

*L-55-16B (21-46-9) is a loan object from the Philadelphia Museum of Art (PMA)

This can be done for objects of any size. However, we are mostly reserving this technique for larger objects, specifically larger textiles and Egyptian coffins. This is because photographing the coffins and textiles normally with a single shot requires a greater distance between the object and the camera in order to fit the entirety of the object into the frame, and doing so reduces the image quality. Not only that, but the camera distortion that is inherent in all photographs will become more obvious. The resulting image will not be an accurate representation of the coffin or textile, which is not ideal for documentation purposes. 

The image on the left is a single-shot photograph of L-55-16B while the image on the right depicts the same coffin lid created by photogrammetry. When comparing the two images, the camera distortion in the single-shot photograph can be seen especially in the feet and head of the coffin lid.

With photogrammetry, we can take parts of the 3-D model and use them as high resolution, distortion-free, 2-D images of the object instead.

Six views of L-55-16B depicting the top, interior, and the four sides of the coffin lid generated using photogrammetry.

So far, a little less than ten coffins, a few textiles, a pithos fragment, and a giant granite relief have been documented using photogrammetry. The models and orthomosaic images are all generated by Jason Herrmann from CAAM, and we are very grateful that he is doing this for us! To learn a little bit more about the photogrammetry process, view this Digital Daily Dig here.

This project was made possible in part by the Institute of Museum and Library Services.

An Ivory Figure from Hierakonpolis: Part II

By Tessa de Alarcon

E4893 before treatment

The figure you see here E4893 is an ivory statuette from the site of Hierakonpolis. In a previous blog post I discussed the X-radiography that helped me determine that the large fill around the waist of the object could be safely removed. Based on that X-ray, I was able to mechanically remove the soft fill material and separate it from the object.

E4893 during treatment: both images show the object during fill removal.

Sometimes the full picture is not always clear from an X-ray. While I was able to remove the fill material and the nails, one thing that was not apparent on the X-ray and only became clear during treatment, is that part of the lower half of the object was embedded in the fill. This section also keys into the upper fragment. This may seem like a minor detail, but it is very important for knowing how the pieces should go back together. The loss in the waist is large and a fill is needed to stabilize the object structurally. One worry I had as I approached this treatment, was figuring out what the fill should look like and how elongated should the body be. However, once I found that in the fill there was a section of the object that keyed the bottom and the top pieces together, I knew that the placement of the two fragments could be conclusively determined.

E4893 During treatment: after the break edges were cleaned. The red arrows point to the part of the object which determines the size of the fill as it fits into the break edge of the top half of the object.

Even knowing how the pieces should go together joining the pieces was far from straight forward. The point of contact is too small for an adhesive join without fill material taking the weight of the fragments or to relay on the connection to hold the pieces in alignment during loss compensation. I had to instead figuring out how to support the fragments in the correct alignment while I created the fill. I decided that the best way forward was to create a removable fill using an epoxy putty. This is a fill that has to be adhered in place, as if it were another fragment, rather than relaying on the fill material to adhere or lock the fragments together. This means that I needed a barrier layer between the fill material and the object, and a system to hold the pieces together. The barrier layer is meant to prevent the fill material from sticking or adhering to the object and you will see in the images below that there is cling film between the epoxy and the object that I used as a barrier layer. The support system, however, took some trail and error before I found a method that worked.

E4893 during treatment on the left is the first attempt at filling the loss with the object resting flat. The image on the right shows the object during the second attempt using a foam support system inspired by the rigging at CLA.

First I tried laying it flat in a bed of glass beads to support the object, but this did not work, it was too hard to see if I had everything lined up correctly and the fragments kept shifting as I put the epoxy in place. Taking inspiration from my colleagues working on Egyptian monumental architecture at the conservation lab annex (CLA). I decided to try making a rigging system in miniature to hold the fragments in place vertically. This allowed me to see the object all the way around and check the alignment more reliably. However, my second attempt using a vertical support system with the object upside down, still led to too much shifting when I tried to put in the fill material.

E4893 during treatment images showing the final system used to support the fragments during placement of the fill material. The image on the left shows the back during fitting and on the right is a view of the front after placement of the fill material.

As a result, I adjusted the system from the second attempt and put the object right side up, carved a chin rest for the figure into the foam support and added a piece of foam to the back to hold the upper fragment more securely in place. The wooden skewers you can see in the images are used to hold the foam pieces together. My third attempt was very effective at holding the object in place in a rigid way with no shifting and gave me plenty of visibility to check the alignment.

E4893 during treatment. The image on the left shows the object with the fill dry fit into place (no adhesive had been applied yet). The middle and left images show the object after the fill was adhered in place and the gaps filled.

After I made the fill, I sanded it smooth and checked to make sure it fit right. Here you can see if dry fit in place and after everything was joined together. This should be a much more reversible treatment than what was done before should this treatment need to be redone again at some point in the future. While the object does not look all that different from the way it did before treatment, it is much more stable now with materials have better aging properties and allow for easier retreatment should that be needed.

E4893 After treatment

This project was made possible in part by the Institute of Museum and Library Services

An Ivory Figure from Hierakonpolis

By Tessa de Alarcon

The figure you see here, E4893, is an ivory statuette from the site of Hierakonpolis that I am working on as part of an IMLS grant funded project. I have just started the treatment, but thought I would give a brief run through of the initial examination since this is a good example of when and why we use X-radiography in our department to evaluate the condition of objects before treatment.

Before Treatment photograph of E4893

You may have noticed that the middle of this object is fill, so not part of the object. The fill has some cracks and splits that suggests it is unstable and should be removed. There is no written documentation for when this fill was done or by who, but it’s possible that this was done shortly after it was excavated. The object was accessioned in 1898. Given that the conservation lab at the Penn Museum was not founded until 1966 that leaves a big gap for the possibilities for when this treatment might have been done.

Annotated before treatment photograph of E4893 indicating the large fill at the waist of the figure.

Based on previous experience, I often worry with these old fills that there are unseen things, like metal pins or dowels, lurking below the surface. X-radiography is a great way to check for these types of hidden previous treatment issues. Though in this case, what I found when I X-rayed the object was not your typical pin or dowel.

Before treatment photograph of E4893 (left) and an X-ray radiograph of the object (right). The X-ray was captured at 60kV, and 6mA for 6 seconds. There are four nails visible in the fill.

Here in the X-ray you can see what I found: while this fill did not have any pins or dowels, whoever had done this treatment had decided to reinforce it by putting nails (4 in total) into the fill material. While this makes the figure look like he has eaten a bunch of nails, it is in some ways better news than a pin would be. Pins usually go into the original material, and if they are iron, can rust and expand causing damage to the object. Pin removal can also be risky and lead to damage of the object especially if the pin is deeply imbedded or corroded into place. These nails, on the other hand, appear to be only in the fill and do not look like they go into the original material of the object at all. This suggests that removal of the fill and the nails should be possible without damaging the object. As this treatment progresses, I will follow up with additional posts and updates.

This project was made possible in part by the Institute of Museum and Library Services

Beloved Objects

be Tessa de Alarcon

Like most other Philadelphia residents, the Penn Museum staff are adapting to working from home. As part of this, the Museum staff have recently been posting on the museum’s Instagram feed info on their favorite objects (pennmuseum #VisitFromHome). This got me thinking about the relationship between people and the things we interact with every day. The objects in the museum’s collection, while loved and cared for by the staff, also bear evidence of love and care from before they were in the museum’s collection. One such object recently came across my desk for treatment, E7517A and E7517B, a Nubian wooden box and lid from Karanog. I am not going to talk about the treatment today, so that I can focus on the care it received before it entered the museum.

E7517A and E7517B after treatment.

In the pictures above and the details below you can see that this wooden box has a variety of metal components, including copper alloy straps and a lock plate on the box, and staples on the lid as part of a repair to cracks and breaks through the wood.

The detail of E7517A, the box, on the left shows the lock plate and one of the metal straps, and the detail on the right of E7517B shows the staples on the lid.

Staples like these are a common repair both in antiquity and historically for a variety of materials and are not an unusual feature on objects in the museum’s collections (here are just a few other examples of both types of staples: AF5211, B9220, 2006-15-41, B20014). If you look closely though, you can see that the metal straps and the lock plate go over the inlays on the box. This suggests that these elements were not part of the box originally and were a later addition.

These components are also made from a variety of metals. I tested them using both a magnet to check for iron, and a portable X-ray fluorescence spectrometer (pXRF) and found that they are a range of metals including iron, copper tin alloys (bronze), and copper zinc alloys (brass). Also, parts that appear similar, like the straps are not made up of the same alloying components, some contain lead in addition to the copper and tin, and some have no lead. The staples are also a range of metals including iron, brass, and bronze.

When I started working on the box, I wanted to tease out when these metal components were added as they could have been either ancient or modern. With this type of question, I typically set up an appointment with our archives to look at the original field notes and field photography. However, in this case, much of the data on the excavations at Karanog is online, including pdf’s of the excavation publications. In the museum’s database I found that the box was from a burial: tomb G 445. Going through the publication, I was able to use the context information to find not only a description of where it was found within the tomb, but also a sketch of the burial, a photo of the box, and a detailed description of it in a catalogue of the finds. The box had been found in the burial with two individuals buried one above the other and was found next to their legs.

Drawing of tomb G 445 from Woolley, Leonard, and David Randall-MacIver. Karanòg: The Romano-Nubian Cemetery. Vol. 3. University museum, 1910: 44. The blue highlighting is an addition to point out the location of E7517A and E7517B in the burial.
Plate 22 from Woolley, Leonard, and David Randall-MacIver. Karanòg: The Romano-Nubian Cemetery. Vol. 3. University museum, 1910.

The textual information from the publication includes some important pieces of information: first that, “it had been considerably restored before being deposited in the tomb, brass binding had been added at the corners and the broken lid had been rudely mended with bronze rivets” (Woolley and Randall-MacIver, 44) and that “it remains in the condition in which it was found, no repairs to it having been necessary” (Woolley and Randall-MacIver, 71).  While the language used to describe these metal components seems to me a bit harsh, not only is it described as “rudely mended”, the lock plate is described as “a perfectly useless lock plate”, it does make it clear that these metal components are from when it was in use (Woolley and Randall-MacIver, 44, 71). It should also be noted that the metal identifications given in the publication were not done through analysis, so don’t match with the results I have from pXRF.

Because of the detailed information in the publication, I also know what was in the box when it was excavated: another smaller box (E7510A and E7510B) and two wooden spindle whorls (E7506 and E7507).  These are all shown in the image below.

Objects found inside E7517A: a box and its lid (E7510A and E7510B) and two spindle whorls (E7506 and E7507)

So, all together what does this information tell me about the history of this box? First, the repairs and modifications to this box happened during its use before it was put in the burial of the two individuals in tomb G 445. The fact that the metal components, even similar ones, have different compositions could mean a few things. It could be that it was repaired and modified using scrap metal with the components being made from different scraps, that the repairs occurred at different times and so with different metals, or both. If they were not made using scrap metal, it is possible that some of the straps may have had to be replaced at some point and that may be why some are leaded bronze and some are not. These straps do not appear to have a function and may instead reflect changes in taste. The function of the box may have also changed, and this may be why they needed to add the lock plate. The various metals for the repairs to the lid almost certainly resulted from various treatment campaigns, meaning that it was repaired, used, broken, and repaired again. In any case these modifications and repairs tell a story of care and use and suggest that this box was loved and treasured by the people who owned it. This may also be why it eventually was placed in a burial, perhaps as a particularly prized possession of one or both of the individuals in the burial.

This project was made possible in part by the Institute of Museum and Library Services.

Lessons Learned: You Cannot Treat Dry Wood Like Wet Wood

by Tessa de Alarcon

Documentation of conservation treatments undertaken in the lab is a very important part of what we in the conservation department do at the museum. One of the main reasons we document our treatments is so that conservators in the future don’t have to try to figure out what was done to an object. Instead those future conservators can read our reports and start off knowing the treatment history.  

An array of treatment reports, and log book entries, from the conservation department at the Penn Museum

We are also sometimes those future conservators, looking back at previous treatments. This means that not only can we see an object’s treatment history, we have the opportunity to evaluate and learn from the decisions made by conservators decades ago. Some of these treatments were successful, and some were not. Now we know to avoid those treatments that clearly did not work.

I recently completed a treatment on an object that is a good example of this process. E11151 is a carved wooden figure from Nubia. It was treated before I worked on it by a conservator in the 1970’s. The photo below is how the object looked when it entered the lab at the end of last year.

Before treatment image of E11151 taken in 2019

In the case of this object, it was noted in the 1970’s as having a slightly powdery surface. The conservator conducting the treatment decided to apply a consolidation method that is frequently used on waterlogged wood: immersion in a solution of PEG (polyethylene glycol). PEG treatments are still done today and are very effective at consolidating and stabilizing waterlogged wood before it dries out. But because of this treatment and others done at the museum around this same time period, we have learned that consolidation with PEG is not effective on dry wood, even if it once was waterlogged. E11151 was dry wood and did not come from a waterlogged context.

E11205, E11187, E11203, E11151
E11151 is on the far right.
This publication photo was taken before the object was treated in the 1970’s.

The photo above is a publication photo of the object before it was treated in the 1970’s. While there is no photography with the 1970’s treatment report, there is a sketch which suggests that the object looked similar to this photo when it entered the lab at that time. As you can see there are quite a few differences in the object’s appearance as it entered the lab in 2019 and how it looked before it was treated in the 1970’s.

Before treatment photo of E11151. The red arrow is pointing to an area of thick, white, and hard high molecular weight PEG and the blue arrow is pointing to soft and sticky low molecular weight PEG

Two different molecular weights of PEG were used on this object, a hard high molecular weight one that was used to consolidate the powdery wood and looked white on the surface where it was very thick, and a low molecular weight one that was used to join pieces of the object together and left the surface tacky and sticky. The sticky PEG also trapped a lot of dirt and dust on the surface of the object.

After treatment detail of the top of E11151

The detail above shows the top of the head of the object. The report from the 1970’s states that during treatment the object began to crack and fragment. PEG is typically dissolved in water or ethanol. Both solvents were used in the PEG treatment of this object. These two solvents can be mixed together and during a normal PEG treatment the wet wood starts with PEG in water and then moves to PEG in ethanol: this helps start the drying process. As the waterlogged wood is also already wet, the PEG can penetrate fully into the swollen wood. However, in the case of dry wood, these solvents (ethanol typically has some water in it) introduce moisture into the object, and it starts to swell as wood is very responsive to moisture. It then has to dry out again after the treatment, causing the wood to shrink. This is stressful for the object. This stress is what likely caused the cracking documented in the report and visible in the image above.

E11151, after treatment photo from the treatment completed in 2020

Here you can see what the object looks like now that I have finished my treatment. Consolidation is a very permanent and tricky to reverse treatment, even when adhesives that remain soluble, like PEG, are used. There is currently no way to remove the PEG from this object. All I have done is reduce the PEG on the surface by cleaning it with ethanol. I also used the previous documentation to figure out where small detached fragments went so that it looks more like it did originally. While the treatment that was undertaken in the 1970’s seems to be over-treatment as it caused new problems, some more severe than the problems the object had to begin with, I do also want to recognize that it is because of past experiments like this one that I know not to use PEG on dry wood.

Because wholesale consolidation is a fairly permanent and risky treatment, I think long and hard when I choose a consolidant. I also remain aware that there is a chance that someday, some future conservator, will deem some of my treatments mistakes as well. Hopefully my mistakes will be ones that they can learn from too.

To learn more about PEG treatments for waterlogged organic materials, check out these links:

Ellen Carrlee Conservation blog: High Molecular Weight PEG for basketry

Queen Anne’s Revenge blog: Waterlogged wood – Gotta bulk it up!

Cardiff University Conservation: Newport Ship Workshop

This project was made possible in part by the Institute of Museum and Library Services.

Treatment of a parchment scroll from Ethiopia: an objects conservator changes dimensions

by Teresa Jimenez-Millas

During the past month I have had the great opportunity of working on a parchment treatment under the supervision of Sarah Reidell, the Margy E. Meyerson Head of Conservation, Tessa Gadomski, Conservation Librarian, and the rest of the fantastic team in the Steven Miller Conservation Lab at the Penn Libraries’ Kislak Center for Special Collections, Rare Books and Manuscripts.

The parchment is an Ethiopian prayer scroll (29-94-123) in our Museum’s collection that we are treating for the opening of the Africa Galleries this November 2019.

In The Walters Art Museum online catalogue, there are similar scrolls to this one. The Walters describes them as, “Ethiopian prayer scrolls were made to be the length of the person who commissioned them, thereby protecting the owner from head to toe.”

This scroll is made of three sections of parchment sewn together using parchment strips/thongs (0.5 cm) from the same kind of animal. Parchment is a sheet material that is made from the skin of domesticated animals such as calves, sheep, and goats, cleaned of their hair and flesh and then dried under tension on a frame. It is a mechanical process and the skin is not chemically tanned. Further analytical methods such as scanning electron microscopy (SEM) or Peptide Mass Fingerprinting (PMF) would give us more information as to the kind of protein and other features that would help us to identify the type of skin.

The first step on this new and exciting project was a close examination of the object under a stereo binocular microscopic (Leica IC80HD). In my examinations, I noticed some interesting features that I would not have been able to understand without Sarah’s expertise, and I’d like to share some of these cool details here.

At first glance, the third section of the scroll has a 9 cm stitched repair that one might think was made after the parchment was manufactured. But as I learned, the process of manufacturing parchment involves drying the material under tension, which leads to marked changes in fiber orientation, and inevitably involves some degree of breakage of certain fibers in the dermal network.

The stitched repair is circled in red

Observation under magnification with Microscope LEICA IC80D we can see that the sewing holes are very round but are not punched. The holes appear to have been pierced when the skin was wet, and the parchment dried around the stitching creating ridged folds that are now keeping the split closed.

The thread is still present in about 25% of the repair. The edges of the thread are not cut but are frayed. At some areas we can still see some remains of black ink that also indicate that the scribe probably wrote over the repair. All these observations indicate that this repair was made during the manufacturing process of the parchment, while still wet.

I will write more about the treatment of this object in a future post!

An Answer to the tough question: What is your favorite thing?

By Tessa de Alarcon

A question we often get asked in the Artifact Lab is, “what is your favorite thing that you have worked on?” Usually I find this question hard to answer because we work on so many different and fascinating objects, but at the moment, it’s a no-brainer. The trumpets from the Democratic Republic of Congo that are slated to go into the new Africa Galleries are by far some of the coolest objects I have ever worked on. As an example, here is AF5211:

After treatment photo of AF5211

This trumpet is carved from elephant ivory (identifiable by the clearly visible Schreger lines).

Detail of AF5211 showing Schreger lines: a feature used to identify elephant ivory

There is some type of reptile skin wrapped around one end and stitched together on the side, and animal fur that literally makes this object look like a rock star.

detail of AF5211 showing the reptile skin and fur

All these details make this object beautiful, but what makes it special is what is hiding beneath the skin. In a few spots where the reptile skin has shifted you can glimpse repairs.

Detail of AF5211 showing plant fiber repairs

The repairs are even more visible from the interior of the object. It seems that at some point, probably when this object was in use, the ivory split. It was then repaired by drilling holes into the ivory and stitching it together. There is also some type of resinous mixture that was put into the join.

Overall view of the interior of AF5211 showing repairs

Detail of the interior of AF5211 showing the repairs

The reptile skin may have been added to both hide the repair and support it so that the object could continue to be used. It is these glimpses of the life of the object that make it so special. It tells not just the story of its craftsmanship but also the people who used it and cared for it.

To see this object in person, visit the new Africa Galleries when they open in November of this year!