#Transformation Tuesday: Getting our Ducks in a Row

The transforming treatment of the Al’Ubaid frieze of three birds (B15883) from the new Middle East Galleries in now complete! (To be more correct, they are probably doves not ducks.) More information about the frieze can be found here. Click here for more information on the exciting new galleries, opening this April!

The frieze before treatment

The frieze after treatment

Originally, the three stone birds (initially called ducks but now identified as doves) would have been surrounded by black shale tesserae and the borders would have been copper alloy sheets. The frieze would have originally looked much like the marching bulls frieze. Unfortunately, neither the shale pieces nor the copper alloy borders made it. The birds had been embedded in a plaster background carved to look like the shale tesserae, and the borders were made from modern machined copper alloy sheets.

The old support system had to be removed due to some condition issues and to prepare the frieze for long-term exhibition. Once taken off, the grimy birds could then be laser-cleaned. The blog post about laser-cleaning them can be found here.

Applying the bulked Paraloid B-72 to the Ethafoam© support

Although the only ‘real’ parts were the stone birds, the curator wanted the entire frieze to be reconstructed to help visitors put the birds in context. It will be displayed next to the marching bull frieze.

After cleaning, the birds were adhered onto a piece of dense archival foam. The black tesserae background was created with Paraloid B-72 (ethyl methacrylate and methyl acrylate copolymer) bulked with glass microballoons and toned with dry pigments. Bulked Paraloid B-72 is stable, reversible, and easily manipulated with either solvent or heat. The shallow lines to make it appear there are tesserae were put in with a heated spatula. The copper alloy borders were also created with Ethafoam© coated in bulked Paraloid B-72 tinted in various shades of green to mimic copper corrosion. The fills in the ducks were inpainted with acrylics to integrate them better.

After all that, the ducks look much happier!

The frieze after treatment and ready for display

Continue reading

A Columnar Matter Part II: The Conservation Treatment of a 3rd Millennium BCE Mosaic Column from Al ‘Ubaid

By Marci Jefcoat Burton

As a follow up to my previous blog post, conservation treatment of the second of four sections comprising a mosaic column from Tell al-Ubaid, Iraq is well on its way! For a quick recap, the column is dated to 2400 – 2250 BCE (Figure 1). After centuries of burial, the triangular and diamond shaped shell, pink limestone, and shale tesserae (also referred to as tiles), were excavated in 1919 – 1924. The original wooden column interior did not survive the centuries of burial, so after excavation, the tesserae were mounted with plaster to four hollow cylindrical supports of metal mesh covered with burlap. After nearly 100 years, shifts in the internal support have caused structural instability to each section.

Figure 1: (left) Before treatment image of the four column sections stacked together to make a complete column. Image courtesy of The Metropolitan Museum of Art. (2003). Art of the First Cities: The Third Millennium B.C. from the Mediterranean to the Indus. The Metropolitan Museum of Art: New York) (right) Column section 2 detail, before treatment.

First step of treatment: Remove tesserae from the current support.

The plaster was softened with distilled water applied by brush, then carved away to expose the sides of the each tessera. The tesserae could then be separated from the plaster and burlap backing one by one (Figure 2). Like the first slice of pie, the first piece was the most difficult to remove. Once extracted, access to adjacent tesserae became easier.

Figure 2: (left) Removing plaster surrounding the tesserae with a scalpel blade. Plaster was first softened with distilled water. (middle) Carefully extracting a shell tessera from the plaster. (right) Shell tessera after removal from column section.

The tesserae were removed from the support and placed on an enlarged reference photo in a tray to maintain the order of composition (Figure 3).

Figure 3: All tesserae were removed from the support and placed on top of a rolled out image of the column section to maintain their original placement. All that remains on the exterior of the cylindrical support is a layer of grey plaster and previously filled areas. As a bonus, the Egyptian female child mummy named Tanwa can be seen in the background, just outside of the Artifact Lab window!

Second step of treatment: Cleaning

After removal from column section 2, all tesserae were covered with a layer of powdery plaster, which was removed with distilled water applied with hand-rolled cotton swabs. Medical scalpels were used to gently lift and remove thick remnants of plaster as well as adhesive from previous repairs. In addition, years of dark-brown dirt, dust and grime were removed with distilled water, and Stoddard solvent (a petroleum-derived organic solvent) was applied to the pink limestone and shell pieces to remove greasy grime trapped in the surface (Figure 4).

Figure 4: (left) Removal of adhesive and plaster remnants from a diamond shaped tesserae using a medical scalpel. (right) Shell tesserae being cleaned with distilled water. Note the dark grey-brown grime picked up on the cotton swab.

Third step of treatment: Repair

Once cleaned, tesserae that exhibited breakage such as cracks, detachment, and delamination were repaired with a thin layer of a semi-viscous solution of Paraloid® B-72 (ethyl methacrylate (70%) and methyl acrylate (30%) copolymer) resin in acetone. The majority of the shell tesserae experienced separation between the layers comprising the shell. Some even separated into several pieces, making their reassembly somewhat of a puzzle (Figure 5)!

Figure 5: (left) A triangular shell tessera delaminated (separated) into six pieces. (right) The same shell tessera with all pieces adhered together with Paraloid® B-72.

The shale was even more temperamental to remove from the column section (Figure 6). Shale is a soft sedimentary rock composed of mud, clay, and minerals, such as calcite and quartz. The inherent nature of the shale causes breakage and crumbling. Water can remove particles from the shale surface, therefore these pieces were cleaned with dry brushes and if needed, cotton swabs lightly dampened with distilled water.

The most resilient material was the pink limestone. While some pink limestone tesserae are weathered on the surface, most likely from centuries of burial, these tiles exhibited very little breakage and cleaned up nicely with distilled water and Stoddard solvent (Fig. 6).

Figure 6: (left) A diamond shaped shale tessera exhibiting a lack of cohesion, best observed around the edges, which caused cracks and areas of material loss. (right) A resilient triangular pink limestone tessera with a weathered surface, noted by the lighter, speckled locations. The pink limestone tesserae have strong cohesion and required very little repair.

After a month of cleaning and repair of the shell, pink limestone and shale tesserae, their overall appearance is quite transformative. The tesserae look brighter and truer to their original colors (Figure 7). This is especially the case for the pink limestone, which went from a dark peach-brown, to a brighter light-pink hue.

Figure 7: (left) Shell, pink limestone and shale tesserae after removal from the former support, and kept in their original arrangement. (right) All tesserae after cleaning and repair, ready for re-mounting to a new support.

…..What’s next?

The next phase of treatment for section 2 of the mosaic column is to mount the shell, pink limestone, and shale tesserae to a new solid cylindrical support. More information and updates on the column treatment progress will be featured in an upcoming post, so please stay tuned!

Kaipure Catch Up

by Anna O’Neill

Hello again from the “Other Artifact Lab”! It’s been a while since we’ve checked in here from Kaipure’s tomb chapel and a lot has changed in Lower Egypt since the summer. Since June, we have been working to clean and stabilize the painted limestone walls of the Old Kingdom (2415-2298 BCE) mud-brick mastaba tomb chapel for a high-ranking Egyptian official named Kaipure. In the winter of 2015-2016, conservators Emily Brown and Madeleine Neiman worked to disassemble the tomb chapel wall from its wooden 1920s support and performed triage treatments (read more about that here) to keep the blocks safe from vibrations caused by construction next door. This past spring marked the start of the current phase of the project: cleaning and stabilizing the blocks so they can be moved to off-site storage in 2018.

If you’ve been through the Lower Egypt (Sphinx) gallery recently, you may notice some new and familiar faces in the lab. While Céline Wachsmuth and I (Anna O’Neill) have been working on the wall since June, in September we were joined by a third project assistant, Jonathan Stevens. 

The view from our lab space, with two of the blocks reflected in the foreground. We may be biased, but we think we’ve got the coolest lab-mate around.

Between all of us it’s been a very busy fall! We’ve continued to clean and stabilize each individual block from the wall, becoming familiar with some different techniques for cleaning, consolidation, infilling, and documentation, as well as repair methods used by the ancient Egyptians (more on these later). Dr. David Silverman, Curator-in-Charge of the Egyptian Section, stopped by to tell us a little more about the history and imagery of the chapel. We’re also improving our proficiency in fork lift handling as we move the pallets supporting the very heavy stones. Just a few weeks ago, we reached a very important milestone – we officially passed the halfway point, with more than half of the 59 blocks stabilized for their move off-site next year.

A view inside the lab. The largest blocks (up to 700 pounds!) are housed on the red shelves along the back wall; the ones covered in tissue are cleaned, consolidated, and ready to move off-site.

If you find yourself in Lower Egypt any time soon, you are welcome to come watch us work in the lab and read more about the history of Kaipure’s tomb chapel (on our new, informative signage!). While we don’t have open window sessions downstairs, we do occasionally find ourselves in the main Artifact Lab and we’ll be happy to talk about our work then. We’ve got more Kaipure blog posts planned, so keep your eyes open for updates and insights.

The Kaipure Conservation Project is funded through a generous grant from the American Research Center in Egypt (ARCE) Antiquities Endowment Fund (AEF) which was established though a grant from the United States Agency for International Development (USAID).

Laser cleaning a trio of birds

In addition to the frieze of 6 bulls (which we are still working on in the Artifact Lab), we are also treating a frieze of 3 birds, in preparation for our new Middle Eastern Galleries, scheduled to open in April 2018.

B15883, frieze of 3 birds before treatment

This is a section of a frieze from the site of Al-Ubaid, Iraq which was excavated by Sir Leonard Woolley in the early 1920s. The birds are the only original pieces of the frieze – the rest is a modern reproduction. The birds (possibly doves?) were carved from limestone and each has a pair of drill holes at their center which would have served as an attachment point. Copper alloy twists would have been used to secure the birds in antiquity – fragments of the original copper remain in one of them.

Due to structural stability issues in the modern reproduction, we needed to disassemble the entire frieze. Once the birds were removed, it was evident that their surfaces were very grimy, related to both the burial environment and time in museum storage. A variety of cleaning methods were explored and tested, but none worked better than using our laser.

One of the birds, after removal and before cleaning

The Conservation Department purchased a Compact Phoenix Nd:YAG laser several years ago, and we are still learning about all of its possible applications. We recently had a workshop with conservator and laser-guru Adam Jenkins, which helped us further develop some testing and health and safety protocols.

Essentially, the Nd:YAG laser works like this: the laser emits a beam of light, typically with a wavelength of 1064 nm (in the infrared), which selectively irradiates and removes unwanted dirt and surface coatings without damaging the object (a process called laser ablation). This type of laser cleaning works well for removing dark substances from light-colored objects, so trying it on one of the birds made a lot of sense.

Easy for me to say. I didn’t do this treatment – project conservator Madeleine Neiman did. So she gets all the credit for this.

After testing, Madeleine carried out her first laser cleaning treatment on the bird in the image below. Here she is getting set up to carry out the work:

And here is a shot of the bird after the surface was partially cleaned: (WOW!)

I think the process and results are best displayed in a gif, or a video, so I’m including the gif below, and here is a link to the video.

Go Madeleine! I think this was a really rewarding treatment to carry out. Please take note of all of the PPE (personal protective equipment) involved, including special eyeware and ventilation.