Eyes are the Window to the Soul, Or So They Say

By Tessa de Alarcon

Typically, at the Penn Museum when we are working on objects, even for display, we prioritize stability over aesthetics. This means that we are often do less cosmetic work than would be done at an art museum when it comes to putting in fills and toning out areas of loss. However, I recently undertook a project where I went further than I usually do to recreate lost material. This blog post is going to walk through why that decision was made in this case as well as some of the mysteries that I found along the way

E1019 Before treatment. At this point the object was being tracked as E17632

The object in this case is an Egyptian cartonnage mask E1019. When it entered the lab it had a lot of condition issues, including the top of the head was partially crushed, it had been heavily treated before, and it was missing the inlays for its eyes and eyebrows. The missing eye inlays had been giving many visitors to the lab the creeps as the mask appeared to have dark empty eye sockets. Because of this, from the start I had been polling to my colleagues about what level of repair I should do to reduce the distraction of the missing inlays. I was not at this point considering replacing them, but was instead thinking about maybe toning out some of the other losses on the cheek to draw less attention to the eyes.

E1019 before treatment, a detail of the face and eyes.

When it first entered the lab the mask was being tracked as E17632 but over the course of the treatment, I found a different accession number on the interior, E1019. With the help of our curators, we were able to piece together that E1019 was the original accession number, and E17632 had been assigned to it later. When I looked up the record for E1019 in the museum collection database, I found the record included two eye inlays! I was so hopeful that this would mean that I could reintegrate two inlays, one into each eye. However, when I reached out to the curators to get more information, I found out that they are two parts of the same eye, the white part of the eye and a pupil/iris.

Eye inlays E1019.1, and E1019.2 before treatment

Well, this left a new set of problems. Especially since you can see here, the white part of the eye was not very white anymore since it was covered with a dark brown substance. I was left with a lot of options, leave the eye inlays out, reintegrate them as they are, or clean them and reintegrate them, and if I reintegrated them should I then also create a replica set for the other eye?

Before making any decisions, I checked to see if they inlays fit the eye sockets in the mask, which they did. The inlays turned out to be for the masks right eye. After that, I spent some time characterizing the dark coating on the white part of the eye inlay. This included UV examination and comparing how the coating fluoresced with the brown modern materials I found on the interior of the mask from previous treatments. The results were not as clear cut as I was hoping. It seems that there is more than one brown substance on the inlay based on the UV examination. With this data in hand, I reached out again to the curators with the options of leaving the eyes out, reintegrating them as is, or cleaning and reintegrating. The curators indicated that they wanted the inlay reintegrated, and that they would like a replica for the missing inlay as well so that she looked even as one eye seemed worse than no eyes. Together we decided to clean the eye inlay, but to keep samples of the substances on the inlay for future analysis.

E1019.1 white part of the eye inlay in visible light (top) and under 368nm UV radiation (bottom). The rectangular material is a piece of acidic board with brown residues on it that had been used on the interior of the mask as part of a modern restoration. The fluorescence on the front of the eye inlay under UV is similar though not as bright as the modern brown residues but the back of the eye the brown residues do not fluoresce.

Once clean, I set about making a copy for the masks left eye to be a close but not identical match. Based on previous experience I decided to make the new inlay set out of a two-part light weight epoxy called Wood Epox as it is easy to shape and can be sanded and carved. To start, I made a paper template of the shape of each inlay. I made sure to mark what I wanted to be the front of each so that the shape would be a mirror image of the original inlay. The white inlay is slightly curved, so I also created a form that would have the same curvature using foam.

The inlay, E1019.1 after cleaning (left), the paper template of the inlays (center) and the foam support mimicking the curvature of the inlay with the inlay in place during a test fit (right).

Next, I rolled out some sheets of wood epox, and using the paper template trimmed out the shape I needed for both parts of the eye. The pupil/iris part I let set flat, what let the one fore the white of the eye set in the form I had made so that it would have the same curvature as the original. Once cured I sanded them to finish, with the final stages being wet sanding so that the replica inlays would also have a natural gloss.

The inlays replicas curing with the white part in the curved support (left) and the original inlays (E1019.1, and E1019.2) laid out above the shaped and sanded replicas (right)

The final step before assembly and placement in the mask was the paint them to resemble but not exactly match the originals. I used gloss medium for the pupil/iris as this inlay was especially glossy and I could not get that level of gloss with polishing and painting alone.

The original inlays (E1019.1 and E1019.2) laid out above the replicas after the replicas have been toned to be similar thought not identical to the originals

Finally, here you can see the end results after treatment. You will see though, that I have not attempted to recreate the inlays for the eyebrows. Because we had the one set of eye inlays, I had something to reference for making the replica set of inlays, however, there are still pieces missing which I had no frame of reference for. There were also likely inlays that went around the outside of the eye as well. These and the brows might have been made out of a variety of materials and without the originals for reference, there is no way to be certain about what their color and appearance would have been.

E1019 after treatment. The original inlays are in the masks right eye and the replicas are in the masks left eye.

An Ivory Figure from Hierakonpolis: Part II

By Tessa de Alarcon

E4893 before treatment

The figure you see here E4893 is an ivory statuette from the site of Hierakonpolis. In a previous blog post I discussed the X-radiography that helped me determine that the large fill around the waist of the object could be safely removed. Based on that X-ray, I was able to mechanically remove the soft fill material and separate it from the object.

E4893 during treatment: both images show the object during fill removal.

Sometimes the full picture is not always clear from an X-ray. While I was able to remove the fill material and the nails, one thing that was not apparent on the X-ray and only became clear during treatment, is that part of the lower half of the object was embedded in the fill. This section also keys into the upper fragment. This may seem like a minor detail, but it is very important for knowing how the pieces should go back together. The loss in the waist is large and a fill is needed to stabilize the object structurally. One worry I had as I approached this treatment, was figuring out what the fill should look like and how elongated should the body be. However, once I found that in the fill there was a section of the object that keyed the bottom and the top pieces together, I knew that the placement of the two fragments could be conclusively determined.

E4893 During treatment: after the break edges were cleaned. The red arrows point to the part of the object which determines the size of the fill as it fits into the break edge of the top half of the object.

Even knowing how the pieces should go together joining the pieces was far from straight forward. The point of contact is too small for an adhesive join without fill material taking the weight of the fragments or to relay on the connection to hold the pieces in alignment during loss compensation. I had to instead figuring out how to support the fragments in the correct alignment while I created the fill. I decided that the best way forward was to create a removable fill using an epoxy putty. This is a fill that has to be adhered in place, as if it were another fragment, rather than relaying on the fill material to adhere or lock the fragments together. This means that I needed a barrier layer between the fill material and the object, and a system to hold the pieces together. The barrier layer is meant to prevent the fill material from sticking or adhering to the object and you will see in the images below that there is cling film between the epoxy and the object that I used as a barrier layer. The support system, however, took some trail and error before I found a method that worked.

E4893 during treatment on the left is the first attempt at filling the loss with the object resting flat. The image on the right shows the object during the second attempt using a foam support system inspired by the rigging at CLA.

First I tried laying it flat in a bed of glass beads to support the object, but this did not work, it was too hard to see if I had everything lined up correctly and the fragments kept shifting as I put the epoxy in place. Taking inspiration from my colleagues working on Egyptian monumental architecture at the conservation lab annex (CLA). I decided to try making a rigging system in miniature to hold the fragments in place vertically. This allowed me to see the object all the way around and check the alignment more reliably. However, my second attempt using a vertical support system with the object upside down, still led to too much shifting when I tried to put in the fill material.

E4893 during treatment images showing the final system used to support the fragments during placement of the fill material. The image on the left shows the back during fitting and on the right is a view of the front after placement of the fill material.

As a result, I adjusted the system from the second attempt and put the object right side up, carved a chin rest for the figure into the foam support and added a piece of foam to the back to hold the upper fragment more securely in place. The wooden skewers you can see in the images are used to hold the foam pieces together. My third attempt was very effective at holding the object in place in a rigid way with no shifting and gave me plenty of visibility to check the alignment.

E4893 during treatment. The image on the left shows the object with the fill dry fit into place (no adhesive had been applied yet). The middle and left images show the object after the fill was adhered in place and the gaps filled.

After I made the fill, I sanded it smooth and checked to make sure it fit right. Here you can see if dry fit in place and after everything was joined together. This should be a much more reversible treatment than what was done before should this treatment need to be redone again at some point in the future. While the object does not look all that different from the way it did before treatment, it is much more stable now with materials have better aging properties and allow for easier retreatment should that be needed.

E4893 After treatment

This project was made possible in part by the Institute of Museum and Library Services

An Ivory Figure from Hierakonpolis

By Tessa de Alarcon

The figure you see here, E4893, is an ivory statuette from the site of Hierakonpolis that I am working on as part of an IMLS grant funded project. I have just started the treatment, but thought I would give a brief run through of the initial examination since this is a good example of when and why we use X-radiography in our department to evaluate the condition of objects before treatment.

Before Treatment photograph of E4893

You may have noticed that the middle of this object is fill, so not part of the object. The fill has some cracks and splits that suggests it is unstable and should be removed. There is no written documentation for when this fill was done or by who, but it’s possible that this was done shortly after it was excavated. The object was accessioned in 1898. Given that the conservation lab at the Penn Museum was not founded until 1966 that leaves a big gap for the possibilities for when this treatment might have been done.

Annotated before treatment photograph of E4893 indicating the large fill at the waist of the figure.

Based on previous experience, I often worry with these old fills that there are unseen things, like metal pins or dowels, lurking below the surface. X-radiography is a great way to check for these types of hidden previous treatment issues. Though in this case, what I found when I X-rayed the object was not your typical pin or dowel.

Before treatment photograph of E4893 (left) and an X-ray radiograph of the object (right). The X-ray was captured at 60kV, and 6mA for 6 seconds. There are four nails visible in the fill.

Here in the X-ray you can see what I found: while this fill did not have any pins or dowels, whoever had done this treatment had decided to reinforce it by putting nails (4 in total) into the fill material. While this makes the figure look like he has eaten a bunch of nails, it is in some ways better news than a pin would be. Pins usually go into the original material, and if they are iron, can rust and expand causing damage to the object. Pin removal can also be risky and lead to damage of the object especially if the pin is deeply imbedded or corroded into place. These nails, on the other hand, appear to be only in the fill and do not look like they go into the original material of the object at all. This suggests that removal of the fill and the nails should be possible without damaging the object. As this treatment progresses, I will follow up with additional posts and updates.

This project was made possible in part by the Institute of Museum and Library Services

A Puzzle without all the Pieces: Treating Papyri

By Jessica Byler

The condition survey of our papyri collection is complete – I counted almost 4,300 fragments of papyrus and vellum, more than we realized were there! The papyrus ranged in size from a few millimeters to 9 feet long. Now, I have moved on to treating a few of the papyri that will be on display in the new Egyptian galleries.

Many of the papyri are sandwiched between pieces of Mylar. Static from Mylar can lift off friable ink or even split the two layers of the papyrus fibers and damage the papyrus. In order to safely remove the papyrus, I use a MinION 2 Ionizing Blower to eliminate the static charge. After removing the papyrus from the Mylar, I can then remove old repairs, realign fragments and fibers that are out of place, and apply new tissue paper bridges. Using a light box can help me identify joins and keep fragments in alignment. Papyrus fibers have different thicknesses, widths, and orientations, so transmitted light from a light box reveals the unique fiber pattern.

Left: Removing papyrus (49-11-1) from a Mylar enclosure using an ionizing blower
Right: Using a light box to realign fragments

Let’s look at one papyrus I am currently treating: a Temple robbery papyrus (49-11-1), dated to the 20th Dynasty or 11th century BCE. Along with removing old materials that might harm or obscure the papyrus, a key reason I am treating this particular document is to make sure the joins are right. It is fragmentary and there have been several treatment campaigns to repair it using a variety of materials, including Scotch tape, Japanese tissue, and Document Repair Tape.

Temple robbery papyrus (49-11-1), before treatment

I removed the old repairs where possible and reassessed the location of the fragments. At some point, several of the fragments have become misaligned or detached. In several instances, the fragments were just slightly out of line and could easily be nudged back into place. However, I quickly noticed some issues with a long fragment on the far left (on the right in the photo of the back below), and a small rectangular fragment at the bottom.

Left: detail of the back of the right section before treatment
Right: Section under transmitted light from a light box, with red arrows pointing to the two fragments in the wrong spot

On the long fragment, there are ink marks either side of the join which do not meet up. If the fragment was in the correct location, you would expect the writing to extend over the break. On the smaller fragment, the color, curvature, and thickness were different than the surrounding fragments. Using transmitted light, it is clear the fibers of these fragments do not actually line up correctly. Although at first glance they might not look out of place, they clearly do not belong there.

Left: Detail of front, with red arrows pointing to ink which does not meet up
Right: Detail under transmitted light, with red arrows showing that the fibers do not line up

The long fragment has two lines of writing at the top, so the number of locations it could join was limited. The small fragment at the bottom did not have any writing on it, so it was harder to determine its orientation and position. To add to this complicated puzzle, these pieces also might not join to any of the extant fragments.

Left: Detail of back during treatment, with the two fragments, indicated with red arrows, properly aligned
Right: Detail of back during treatment, with red arrows pointing the two fragments, and blue arrows pointing to some of the new bridges; areas of white residue from the old materials is also visible

Thankfully, their proper locations were easy to find using a light box. As you can see in the detail photos above, the fibers of the papyrus were a perfect match. The tissue paper bridges I used were around the size of a grain of rice and are clearly visible but blend in nicely with the papyrus. The Temple robbery papyrus is now ready for display!

Temple robbery papyrus (49-11-1), after treatment

This project is funded by the Antiquities Endowment Fund (AEF).  The AEF is supported by an endowment established with funds from the United Stated Agency for International Development (USAID).

The Desalination Station II: The Salty Pot Field Diaries

by Tessa de Alarcon

So I have written before about desalination to stabilize ceramics with soluble salts, but this time I’m going out into the world, and setting up a desalination station for the Naxcivan Archaeological Project in Azerbaijan.

I had been given a heads up from colleagues Brittany Dolph Dinneen (the previous conservator on site) and Jennifer Swerida (project registrar), that soluble salts may be an issue with the ceramics from the project’s excavations. Salts can be tricky to identify with freshly excavated material, as the ceramic vessels won’t have visible issues until a while after their excavation; once the salts from the burial environment have had time to go through a few cycles of crystallization and deliquescence.

Before treatment image of QQ.15.155: the white haze is from soluble salts

Here at on the Naxcivan Archaeological project, the salts are mostly manifesting as a white haze over the surface of ceramics.

Detail of QQ-15-193 showing small salt crystals, rather than just hazing, on the surface.

A few are also showing clear crystallization, but the hazing has been the more frequent symptom of the salt problem, especially as this hazing was not observed when they were first excavated.

Detail of QQ-15-155: the poultice in place.

To confirm that what we were seeing was in fact soluble salts, I poultice the surface.

Detail of QQ-15-155: after the poultice was removed

Once the cotton poultice was dry, I removed it from the surface, re-wet and checked the conductivity, and tested it for nitrates and chlorides with test strips (there are lots of other types of soluble salts, but these are two common ones that are easy to test for). The results were positive, and as you can see the poultice also removed the white haze clearly showing how soluble these salts are.

Here Calypso Owen and I are filtering water from the sink with a deionizing column to get salt free water.

The next step is getting the water, and while we used to use a similar system at the museum to make deionized water, the scenery is pretty different.

Salty ceramics soaking in deionized water: the tags outside the buckets are being used to help track the objects during treatment.

The pot then soaked for a day, while I checked the conductivity until it reached the end point of the desalination process.

Desalinated ceramics after they are removed from the water and are now drying: again the tags are moving with the objects so we can track them.

Once it was removed from the water I rinsed it with fresh clean water, blotted it dry, then left it to air dry.

QQ.15.155 after treatment: white haze free!

Finally, here is the bowl after desalination. As you can see it is now white haze free. Most importantly, it can now be handed over to the Naxcivan Museum with no risk of damage from ongoing salt cycles.

View from the current excavation: Azerbaijan is beautiful

As a final note, it has not been all work, I did get to hike up to the current excavation and I wanted to end on this photo taken from the site, as Azerbaijan is stunning, and I can’t resist the opportunity to share.

A Complete View and a Complete Treatment: Conservation of the Roman Period Mummy Mask

Update – this post contains outdated language. We no longer use the term “mummy” and instead use “mummified human individuals” to refer to Ancient Egyptian people whose bodies were preserved for the afterlife. To read more about this decision, follow this link.   

After using humidification and four extra hands, the mask is now unfolded! This complete view of the object provides us a wonderful opportunity to look at the materials used in construction and allowed treatment to finally move forward.

Before jumping into treatment, I had the opportunity to perform Multispectral Imaging (MSI) on the mask, allowing us to analyze some of the pigments non-destructively and with great results.

E2462. From left to right: Visible light, Ultraviolet illumination, Visible induced IR luminescence

E2462.
From left to right: Visible light, Ultraviolet illumination, Visible induced IR luminescence

Under ultraviolet illumination, a bright pink fluorescence was visible (middle), indicating the use of a madder lake pigment in the cheeks and to accentuate the face and hands. I also used visible induced IR luminescence to pinpoint the use of Egyptian Blue pigment in the crown, jewelry, and green leaves (right, Egyptian Blue highlighted in pink). This is a material commonly found in Roman period Egyptian artifacts.

In addition to finding out some of the materials used, I also completed full documentation of the object. Although some of the surface is still intact, the paint layer is in poor condition with areas of flaking and powdering. There is also a large loss to the textile along with some smaller tears and holes.

E2462 During treatment detail of flaking paint

E2462 During treatment detail of flaking paint

As my first order of business, the paint needed to be stabilized. This paint, like many other Egyptian painted surfaces, is sensitive to water and adhesives can cause staining and darkening. This meant a lot of testing was required to find the perfect adhesive for the job.

Using both testing panels and small, discrete areas of the surface, I tested adhesives until I found funori, a seaweed-based polysaccharide. This material preserved the matte and light tones of both the paint and ground layers.

Amaris Sturm, summer intern, consolidating surface of E2462

Amaris Sturm, summer intern, consolidating surface of E2462

As treatments usually go, you sometimes get unexpected bumps along the way. As I was consolidating I discovered that the flesh tones in the face and hands were significantly more sensitive to the water-based adhesive. I quickly had to rethink my approach, ultimately using a methyl cellulose in 50:50 ethanol: water for the hands, face, and larger flakes in the yellow framing the face.

Once consolidation was complete, I moved on to the next hurdle: the molded mud plaster mask. A large gap is present between the fragmented mud plaster crown and the textile below. To support the plaster and its mends, I made a removable fill of carved Volara foam and Japanese tissue, all toned with Golden acrylic paints to make the supports more discrete.

Removable fills to support the heavy mud plaster crown in E2462

Removable fills to support the heavy mud plaster crown in E2462

Fragmented, actively shifting, and detached mud plaster was mended with a 40% AYAT in acetone applied by brush and syringe. Unstable and weightbearing cracks and gaps were filled with a 25% AYAT in acetone that was bulked with microballoons and toned with dry pigments. Fill material was applied with syringed, shaped with a brush and wooden skewer, and  smoothed with a little bit of acetone. A thin toning layer of acrylic paint was applied to fills to make them a warmer tone, but still distinguishable from original material.

Filling compromised gaps on E2462

Filling compromised gaps on E2462

And with that, the treatment is complete! The mask is now stable and will be returned to storage safe and sound.

E2462 Before treatment (left) and After treatment (left)

E2462 Before treatment (left) and after treatment (right)

  • Amaris Sturm is a second-year graduate student in the Winterthur/ University of Delaware Program in Art Conservation. She recently completed her summer internship in the Penn Museum’s conservation labs.