What you see above are 4 different images of our mummy Wilfred/a’s cartonnage. Each image represents a different way of looking at the cartonnage, and assists us in better understanding this object. But what are we seeing in these images, and how did we produce them? (If you have been following this blog, or our museum blog, these types of images may be familiar to you, since we have used these techniques to look at other objects, including a painted wooden shabti box. But every object is different, and in this case, I’ve learned something new that I’ve never seen before, so read on to learn more!)
Let’s start with the image in the upper left – this is easy.

Visible image. Captured with a Nikon D5200, modified by replacing the hot mirror filter with a glass custom full spectrum filter, with a B+W UV-IR-cut filter & incandescent photo light source.
This is a photograph taken in normal (visible) light with a digital camera. This image represents what you see when you look at the object here in the Artifact Lab. We see that the surface of the cartonnage has a design painted in many different colors, and that there are some residues on the painted surface in areas. There is a lot that we can learn about this object just by looking at it in visible light, but what we cannot do is confidently identify the pigments used. So in this case, multispectral imaging comes in very handy. Let’s take a look at the next image.

Visible induced IR luminescence image. Captured with Nikon D5200 modified full spectrum camera, #87C filter, Crimescope 600nm light source.
This is an image of the exact same view of the object, but it was captured using our modified digital camera with a #87C IR filter, using our SPEX Mimi Crimescope with the 600nm filter as a light source. With this technique, we can clearly identify that Egyptian blue was used in the areas that appear bright white, because these areas are showing visible-induced IR luminescence (in other words, they emit infrared light when excited with visible light). No other pigment used by the ancient Egyptians has this property, so we can say with certainty that these areas are painted with Egyptian blue. To better visualize these areas (since the rest of the image is nearly black) we can use the image captured in visible light and the above image to create a false color image.

False color image of the cartonnage created in Photoshop, where the areas painted with Egyptian blue appear red.
The false color image shows us the luminescent (Egyptian blue) areas in red. If you look closely, you’ll be able to see that the red areas are slightly shifted, due to the fact that we probably bumped the camera in between shots. But you get the idea.
Finally, I wanted to see what we could learn about the cartonnage by looking at it under other wavelengths of light with the Crimescope. I was expecting that we’d probably be able to better visualize the old adhesive used to join the cartonnage fragments in the past, and maybe better understand the residues on the surface. But when we looked at it with the 300-400nm filter (with a peak emission of 365nm), this is what we saw:

UV visible fluorescence image. Captured with a Nikon D5200 modified full spectrum camera with B+W UV-IR-cut filter, using the Mini Crimescope 300-400nm filter.
In this image, the areas that stand out the most are the areas fluorescing a bright orange-pink color, which appear pink in visible light. I had never seen this before and wasn’t exactly sure what this meant, but after looking into it a bit, I believe that this fluorescence indicates that the pink areas were painted with madder, a dyestuff obtained from the roots of the madder plant. Madder has been identified as being used in ancient Egypt to create pink pigments for painting, and is known for having a characteristic pinkish-orange UV fluorescence, which is how I would characterize what we’re seeing in the above image. There are other ways we could try to confirm this, but this was an exciting, and unexpected observation!
* Special thanks to conservation intern Yan Ling and Conservator Tessa de Alarcon for their help with capturing and processing these images.