CHARACTERIZATION OF ANCIENT MATERIALS USING PIXE SPECTROMETRY

S.J. FLEMING
MASCA, The University Museum, University of Pennsylvania, PA 19104, USA

C.P. SWANN
Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

P.E. McGovern and L. HORNE
MASCA, The University Museum, University of Pennsylvania, PA 19104, USA

The first part of this paper describes some of the novel features of the Bartol Research Institute's PIXE facility that have made it such an effective analytical tool for the study of a diversity of ancient materials. The gains of selective filtering of the X-ray spectrum (to enhance detection limits for minor and trace elements), and of a "microbeam" mode of operation of the facility, are illustrated by two practical applications: (i) a new look at the nature of colorants used in late 2nd millennium Egyptian glassmaking, and (ii) a study of Panamanian gold artifacts finished by the "depletion gilding" process.

1. Introduction

Over the past eight years the Bartol Institute's PIXE facility has been used to study the composition of more than 2500 ancient artifacts of widely varying material types and cultural origins. There has been a steady improvement in the detection limits for minor and trace elements of potential importance in archaeological research – primarily through the use of novel selective filtering in the detection system [1] – to a point where several of those limits are currently an order-of-magnitude lower than they were a decade ago (see fig. 1, by way of illustration of this for the analysis of cobalt and nickel in a bronze matrix).

Historically, the research emphasis has lain with the study of bronze [4–6], though iron, glass, vitreous materials such as faience glazes and smelting slags (from the processing of both copper and iron ores), and copper- and iron-rich ores, all now also figure strongly in our routine output of PIXE data. (For iron and steel, see refs. [7,8]; For glass and faience, see refs. [9–11]). For slags and ores, see refs. [12,13].) Detection limits for these different materials are summarized in refs. [8,13,14]. We have gained a great deal of information about alloying preferences in metal production, and about base recipes and choice of colorants in glassmaking, while building up a data bank on trace element patterning which may, at some future point, be a key to the definition of trading patterns of raw materials and/or the items produced from them.

Up to early 1986, all the PIXE data were obtained in what might be described as a "minibeam" mode of operation, i.e., data were gathered using a proton beam 500 μm x 500 μm in size, that was usually set to automatically scan an area of about 20 mm². Constraints on the area of analysis were set less by the maneuverability of the proton beam, than by practical aspects related to the shape and state of preservation of an artifact. (For example, to avoid the superficial area of a glass artifact where elemental leaching might have occurred during long-term archaeological burial, we would prefer to focus on the pristine matrix exposed by a modern fracture or chipping.) There were, however, certain kinds of artifacts that had to be excluded from our research program. Heavily corroded bronzes are the most obvious example. Over the millennia, the corrosive agents in ground water (particularly carbonic acid, water-soluble chlorides and sulphate salts) react with the copper matrix of an artifact, often to reduce it to no more than an irregular central core of sound metal. The thick bands of corrosion products surrounding that core would retain only a fraction of the minor and trace elements in the original bronze [15,16].

The subsequent development of a "microbeam" mode for the Bartol PIXE facility (i.e., a mode in which the proton beam is pinched down to a 50 μm x 50 μm size and routinely used to scan areas of as little as 0.5 mm²) has resolved such practical problems [17]. Its novel focusing component, an electrostatic quadrupole triplet [18], has proven thoroughly reliable and robust throughout its first three years of operation. During that time we have advanced our areas of material interest to

V. GEOLOGICAL/ARCHAEOLOGICAL APPLICATIONS
include gold alloys used in pre-Columbian burial goods (see section 4), pigments used to decorate early Iranian pottery, and partially corroded Iranian silver items.

2. Limits to beam focusing

As designed, the Bartol PIXE facility now has the potential for much tighter beam focusing, certainly down to 10 μm size. There are, however, at least two reasons why this is actually undesirable for the analysis of archaeological material:

(i) The need to be able to adjust easily the orientation of artifacts of all shapes and sizes, from weighty axeheads to delicately decorated jewelry, means that we have to run the Bartol facility in an "external beam" mode. Spatial resolution is then limited by proton scattering processes both in the air (or helium-filled) gap in front of the artifact's surface, and within the artifact's matrix (since, in terms of the range of protons in bronze, glass, etc., the latter is always a thick target).

(ii) On the microscopic scale, there is appreciable inhomogeneity of structure and composition in most archaeological materials. In bronzes, for example, the process of alloying copper with arsenic or tin at additive levels of 3% and above leads to the development of "dendritic" microstructures with a composition significantly different (over a spatial scale of 20 μm or so) from that of the surrounding eutectic. And the primitive nature of early smelting and refining procedures ensure that most bronze matrices are littered with fine inclu-

3. Glaze colors from Egyptian faience

Ancient sites: Thebes (about 500 km south of modern Cairo), a political and religious capital of Egypt during the New Kingdom (circa 1550-1070 B.C.), and Tell el-Yahudiyeh (about 20 km north of Egypt, in the Nile Delta), the site of an elaborately decorated palace built by Rameses III (circa 1180–1150 B.C.).

Material: Low alkali silicate glaze (2% alkali oxides, circa 3%, though perhaps reduced somewhat by leaching effects during burial)

Filter arrays: (i) 3.8 mg/cm² Al foil (to suppress complex "pile-up" contributions from Si and Ca)

(ii) 3.8 mg/cm² Al foil + 7.5 mg/cm² V foil + 15 mg/cm² muscovite (to suppress the Fe X-ray contribution, where necessary).

In a previous paper [11] we outlined some of the distinctive production features of the earliest well-attested glassmaking factory in Egypt, at mid-14th century B.C. Tell el-Amarna, the short-lived capital of the heretic pharaoh Akhenaten [20]. The Amarna glassmakers gained their reputation from their sophisticated use of the core-forming technique in the production of delicate multi-colored vessels. But the traditional faience industry, by then already some two thousand years old in Egypt, also advanced swiftly at this time. To the ever-popular blue/green glazing (achieved by manipulating copper and soda contents [21,22]) was added a wide range of novel glaze colorants. The origins of these new colorants can be traced back to a phase of experimentation in the smelting of metal ores in upper Mesopotamia early in the 2nd millennium B.C. [23] (the new "palette" included calcium monate white, lead ammonate yellow, and cobalt blue, as well as some uniquely Egyptian combinations of colorants such as lead antimonate yellow with copper blue to give a green glaze.

The technological and stylistic transformation of the Egyptian silicate industry continued for only about another two centuries. Thereafter, as Egyptian political and economic fortunes declined, there was a wholesale return to the blue/green glasses and rigid, formalized styles. In the interim, however, "local idioms" of faience production sprang up at sites where local silicate industries are also attested archaeologically [24,27].
Table 1. Alkali components of Egyptian faience 

<table>
<thead>
<tr>
<th>Site</th>
<th>Mean oxide contents [wt.%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theben</td>
<td>Na₂O 1.02, MgO 0.43, Al₂O₃ 0.17 (n = 3)</td>
</tr>
<tr>
<td>Tell el-Yahudiyyah</td>
<td>Na₂O 0.41, MgO 0.39, Al₂O₃ 0.19 (n = 3)</td>
</tr>
<tr>
<td>el-Amarna</td>
<td>Na₂O 0.60, MgO 2.13, Al₂O₃ 0.65 (n = 4)</td>
</tr>
</tbody>
</table>

Standard errors are quoted in parentheses.

The PIXE program has defined the nature of some of these idioms by focusing on two groups of faience glasses (Fig. 2): (i) jewelry included in the foundation deposits of the mortuary temples of three pharaohs (Ramesses II, Siptah, and Teworsor) at Theben [25,26]; and (ii) tiles in the form of multi-colored rossettes from the palace of Ramesses III at Tell el-Yahudiyyah [27].

Among the primary glaze-making ingredients, we found that alkali contents for both the study groups were quite similar to one another, but that their alumina, magnesia, and potash contents were significantly lower than those characterizing the earlier Amarna faience industry (Table 1). These differences most likely reflect the availability of more or less pure raw materials at each site. Different mixtures of transitional metal ion colorants do, however, serve to differentiate the Rameside groups from one another (Fig. 3: dendrogram). For example, a manganese/cobalt greyish blue glaze (GY/BL) was prevalent in the Theben group, whereas a manganese/cobalt brownish blue glaze (BR/BL) was only found in the Tell el-Yahudiyyah group. By varying the relative amounts of either element in a mixture, a far bluer glaze (with more copper) was produced at Theben (BLU5), and a distinctive purplish brown glass (PU/BR1) was produced at Tell el-Yahudiyyah by further addition of manganese. Manganese oxides are scattered throughout Egypt; copper oxides were exploited by the Egyptians both in the Sinai and at Timna in the Wadi Arabah [21,28]. The alum deposits of the Western Desert ores are the most likely source of cobalt [29]. Although these alums contain manganese, the relatively high MnO/CuO ratio of about 2.2 that we found in the faience glasses (versus that ratio for cobalt blue glasses, of about 1.2) strongly suggests that manganese was deliberately added (see also ref. [30]).

Such admixtures of copper, cobalt, and manganese are a predictable outcome of the prior use of colorants involving these elements not only at el-Amarna but also in even earlier times at sites in the neighboring Near East [10,20]. The specific mixture of these admixtures (and, to a lesser extent, of transparent white glasses; Fig. 3) supports a view that the faience were locally produced according to specific recipes. Nuances of color were possible, actively sought, and enabled these early glassmakers to recreate images of the natural and human worlds about them as never before.

4. Gold compositions at Site Conte

Ancient site: The cemetery of Site Conte (about 100 km southwest of modern Panama City), with unplundered pre-Columbian burials dating circa 400 to 900 A.D.

Matrix: Gold and gold/copper alloys (Cu ranging from 0.1% to 35%).

Filter array: 21 mg/cm² brass foil (to suppress "pile-up" contributions from Au).

Metalworking techniques in the New World first appear in the Andean region, sometime during the first millennium B.C. They spread gradually north into Ecuador and Colombia, reaching the Panamanian Isthmus by the first few centuries A.D. Over the next few centuries, a number of regional goldworking styles developed there, all of which are represented in the finds at Site Conte [32,33].

PIXE data for a wide range of artifacts from one of Site Conte's richest burials indicate that gold was used in two ways: (i) in a near-pure form as it occurred in placer deposits or shallow mines, the metal containing a minor amount of silver and a trace of copper; and (ii) as an intentionally produced gold-copper alloy in a variable proportion known today as tumbaga. Whether an artifact was shaped of gold or tumbaga correlates with the method of manufacture: the choice was apparently technological and had to do with the metal's working and thermal properties. Unalloyed gold is soft and malleable; it can be hammered into thin foil directly from gold nuggets. At Site Conte these foils, which were used as decorative sheeting over bone, ivory and resins, were about 0.1 to 0.5 mm thick.

Tumbaga, because of its lower melting point (~910°C for a 80Au/20Cu eutectic, versus ~1064°C for pure gold~0.5 mm thick, always retains at least a tenth (and sometimes...
more than a half) of its original copper content [34,35]. Thus, PIXE study of just the surfaces of deper-gilded gold artifacts will provide evidence for the alloyed nature of the underlying material (fig. 4). Unlike pure gold, tumbaga is prone to corrosion. If the tumbaga’s copper content is high (≥ 25%, by weight), the corrosion process is capable of eroding away the tumbaga immediately beneath the deper-gilded layer, sometimes causing the surface to peel off like a thin foil [36,37]. Artifacts that have suffered in this way (or those that have suffered some kind of physical damage) can provide what amounts to a silver of tumbaga with remnants of the deper-gilding layer adhering to it (fig. 5). In such situations, the Bastel PIXE facility, in its "microbeam" mode, provides access to the artifact’s bulk composition.

Thus far we have studied only two artifacts in this way. One was a plate decorated with complex mythical creatures, which was slightly fragmented at its edge: Depleted surface Au 92.7%, Ag 1.6%, Cu 5.7%. Tumbaga matrix Au 46.1%, Ag 2.7%, Cu 53.3%. The other was a small undecorated chisel, which was fragmented at its tip: Depleted surface Au 83.7%, Ag 1.6%, Cu 14.7%. Tumbaga matrix Au 49.7%, Ag 2.7%, Cu 47.6%.

The fact that the original tumbaga recipes of these two very different items were quite similar, while their surface compositions were not, raises the intriguing possibility that the most prestigious burial goods—in this case, the plaque—were the most conscientiously worked, to ensure that their surfaces had the highest possible golden luster. Because of its technocultural implications, we will be studying this notion in far more depth over the coming year. As it is, these data highlight the Sitos Cente goldsmiths’ achievements in the use of the deper-gilding process, turning items that were as much copper as gold into ornaments of such high luster that they were thought fit for burial with a chief.

5. Conclusions

Archaeology is a broad discipline, with a diverse material expression, a time-frame of some 15 millennia, and a spatial influence that is worldwide. Reconstruction of the tempo of practical change and advancement in antiquity is a slow process, calling for the gathering of as much information as possible about how artifacts were made and how resources were exploited at different points in time. As the Bastel PIXE facility now stands, with its detection system optimized for study of a range of materials, and with its recently added microbeam capacity allowing for specialized spatial analysis, we foresee that output could rise to around six hundred artifacts per year. Over the next decade we can expect therefore that the statistical footing for the interpretation of PIXE data will become much firmer, and that PIXE spectrometry will become increasingly the analytical tool of choice in resolution of archaeological problems.

References

[28] B. Rothenberg, Were These King Solomon’s Mines? Ex-

V. GEOLOGICAL/ARCHAEOLOGICAL APPLICATIONS