Treatment of a Huron cigar case

To prepare this jewel of a cigar case for exhibition, lifting and detaching moose hair and splits in the birch bark had to be stabilized.

Before treatment image showing the cigar case from the side, with arrows indicating lifting and detaching moose hair (red ) and splits in the birch bark (green)

A small piece of twisted Japanese tissue paper used to replace some of the missing threads

 

Some of the lifting moose hair was stabilized with dabs of 5% methyl cellulose. For the lifting moose hair around the edges of the case, much of this damage was exacerbated by the missing brown thread stitches. For these areas, after re-positioning the moose hair, I recreated the missing threads with twisted Japanese tissue paper fibers, toned with acrylic paint.

 

The fibers were adhered in place with Lascaux 498, an acrylic emulsion.

Before (left) and after (right) treatment images, with red arrows indicating the locations of the replacement stitches

Unstable splits in the birch bark were repaired from the interior with Japanese tissue and Lascaux 498. Additional support splints made of twisted Japanese tissue fibers were added to the exterior in one place on the lid.

Before (left) and after (right) treatment images of the lid. The red arrows indicate the location of the split and the repair splints used on the exterior.

The cigar case is now on exhibit in our Native American Voices gallery. I only learned after it was installed that it dates to 1850 – much older than I realized! Its age makes it an even more remarkable piece.

The cigar case on display in the Native American Voices gallery

Moose hair and birch bark

Moose hair and birch bark. Those are 2 materials that we have not written about on this blog before. But now that we are working in the Artifact Lab on objects for all of our upcoming exhibitions and loans, we are seeing a wider variety of artifacts and materials in the lab.

This embroidered birch bark case will be installed in our Native American Voices gallery later this month, so it is in the lab for examination and treatment.

Views of both sides of a small birch bark and moose hair case (45-15-1328) 

The 2-part case (the lid is a separate piece) was purchased by the museum in 1945. It is attributed to being Huron and from Canada.

The case itself is made of birch bark and it is embroidered with moose hair. The intricate details are difficult to appreciate without being able to see them up close. So, let’s take a closer look at the decoration:

Details of the moose hair embroidery, 7.5X magnification

Details of the moose hair embroidery, 20X

The case and lid are edged with bundles of moose hair attached with thread:

Details of the moose hair embroidery, 7.5X magnification

As you can see in the image above, some of the threads attaching the moose hair bundles along the edges are missing, causing hairs to become lost. These areas, as well as splits in the birch bark, will have to be stabilized before this case can go on display.

Check back for post-treatment photos, and visit the museum to see this case on exhibit by the end of May.

Two Al-‘Ubaid friezes

There will be a heavy rotation of objects from Iraq and Iran in the Artifact Lab as we work on objects that will be installed in our new Middle Eastern Galleries, scheduled to open in April 2018. Two of the newest pieces to come into the lab (but 2 of the oldest things in here) are these friezes from Tell Al-‘Ubaid, a site located west of Ur in Iraq, which date to the Ubaid period (ca. 6500-3800 BCE).

B15880, frieze of 6 bulls.

E15883, frieze of 3 ducks

These frieze fragments were excavated by Charles Leonard Woolley in 1924 as part of the British Museum/University Museum Expedition to Al-‘Ubaid. They both have been heavily reconstructed, displayed a lot, and loaned several times, so this is not their first time in the conservation lab. Due to some condition issues and because we are preparing them to go on long-term exhibition here at the museum, we have decided to deconstruct the old repairs and reassemble the friezes using materials that we expect will last longer and provide greater protection for the original pieces.

Conservation treatment of the frieze with the bulls began a week ago:

The bull frieze after 2 days of treatment.

One week later, even more progress has been made:

The bull frieze after 1 week of treatment.

Detail of the first bull freed from the frieze, 7.5X magnification. The bulls are made of shell and are in excellent condition.

Prior to treatment, the friezes were x-rayed to provide a better understanding of their construction and previous repairs, and to guide conservation treatment.

A digital x-ray radiograph of a portion of the bull frieze showing ancient methods of attachment (some are circled in red), modern nails (circled in blue), and a large fill made as part of a previous conservation treatment (circled in green).

Check back for updates on this exciting and complex treatment.

 

Cleaning Questions and Cross-Sections

Julia Commander is a third-year graduate student in the Winterthur/University of Delaware Program in Art Conservation. She is currently completing a curriculum internship at the Penn Museum.

The investigation of the painted Ptah-Sokar-Osiris figure continues. Previously, I mentioned that I would be taking cross-section samples to gain a better understanding of the paint layers. This type of sampling involves taking tiny (less than 1 mm) flakes of paint to capture the stratigraphy. Once I have a slice showing all of the layers, I can look at the edge under magnification to observe the structure from surface down to ground level.

In this case, I took four samples from representative areas on the figure in order to compare the layers. Before sampling, I looked at each area under magnification and made notes about surface characteristics and conditions. To sample, I continued working under magnification with a fresh scalpel blade.

L-55-29, cross-section sample areas. You can also see the darkened appearance of the front surface.

As you can probably imagine, handling a tiny little paint flake can be tricky. To make observation possible, conservators embed cross-section samples within a mounting material, typically a clear resin. Mini ice cube trays are perfect for making small blocks of resin for this purpose. After embedding the sample between two resin pours, one face of the cube is polished to a glossy finish. The polishing process helps to get a clean cut of the sample from an edge-on perspective.

Mounting cross-sections with a clear polyester resin, molded in a mini ice cube tray. The cubes are then polished with Micro-Mesh cushioned abrasive cloths.

You never know exactly what your cross-section will end up looking like until it’s under the microscope. Flakes can shift while the resin cures or be affected by polishing, so it’s an exciting moment to see the results. Sample X2, below, shows a clear view of the layer structure. Similar to the way conservators use ultraviolet (UV) light during object examinations, cross-sections are often viewed with various light sources to show different properties. Here, you can see the sample in visible light and UV light (365 nm).

Sample X2, 100X total magnification, in visible light (right) and ultraviolet light (left). Samples were viewed on a Zeiss Axio Scope.A1 polarized light microscope.

We can see a few interesting features here. The sample area appeared to have predominantly red paint, although it was heavily obscured by the surface darkening. The uppermost layer of dark material could be related to a discrete layer of soiling or coating, or we could be seeing black paint. Since the front surface of the figure is intricately painted, it’s difficult to completely rule out paint as a possibility. Aged coating materials often fluoresce in UV light, which can help to distinguish them from underlying paint layers. In this case, we can see small flecks of fluorescence (indicated by the red arrows) but not a distinct fluorescent layer. We can also observe faint fluorescence in the ground layer, which is consistent with the idea of an aged animal glue binder.

Another sample, X4, came from an area of plain red paint without any adjacent black designs. This area was also affected by the surface darkening issue, although to a less severe extent. Here, instead of a discrete layer of dark material, we can see small specks above the red paint layer (indicated by the red arrows). These dark specks are most likely related to soiling or discolored coating and unlikely to be original applied paint.

Sample X4, 200X total magnification, visible light (right) and ultraviolet light (left). Samples were viewed on a Zeiss Axio Scope.A1 polarized light microscope.

The cross-section samples offered some insights into the multi-layered nature of the delicately painted surface. As with most analytical techniques, results lead to more questions than clear-cut answers. Luckily, my colleagues here in the lab got together to talk about this complex condition issue and offer different perspectives and approaches. To clean or not to clean the darkened layer? Clarifying the surface details would be helpful for interpretation, but an even more gentle cleaning system will be needed to avoid damage to paint layers. The consensus: further testing needed!

Back in business

Saturday April 8th is the official reopening of the Artifact Lab, complete with a modified name and some new objects on exhibit and in the lab.

View of the Artifact Lab, ready for reopening on Saturday April 8th

The Artifact Lab: Conservation in Action looks a lot like it did before we closed in December, but as you can see from the shot above, our focus has shifted from Egyptian mummies and funerary objects to a wider range of artifacts, with a special focus on objects being prepared for installation in our Middle East Galleries next year.

This glazed clay slipper coffin from Nippur, excavated by our museum in the late 19th century, is front and center in the Artifact Lab:

The slipper coffin (B9220) on display in the Artifact Lab

It has a fascinating history, including its restoration here at the museum in the 1890s, which is noted on its catalog card as being carried out by the restorer William H. Witte. The restoration work allowed this coffin and several others to be displayed for the opening of the new museum building in 1899, where they remained on display for 40 years. We are particularly tickled that this coffin was displayed in this very same gallery where the Artifact Lab is now housed, the Baugh Pavilion.

The Baugh Pavilion, one of two galleries devoted to the museum’s Babylonian expeditions, as it appeared in 1899 with four slipper coffins on display. UPM Neg. #22428

118 years later, the slipper coffin has once again been installed in this space. It’s exhibition this time would not be possible without the extensive treatment carried out by conservator Julie Lawson in 2005. You can read more about its history and her work in her article in Expedition Magazine. For those interested in a more in-depth discussion of the conservation treatment, Julie also wrote an article that was published in the American Institute for Conservation’s Object Specialty Group Postprints, Volume 13, 2006.

There are many more stories to share about the objects and work being done and we’ll continue to write about them on our blog. In the meantime, come visit us now that we are open again! Our open window times also have changed slightly – they are now as follows:

Tuesday – Friday 11:00 – 11:30 and 1:30-2:00

Saturday – Sunday 12:00-12:30 and 3:00 – 3:30

Hidden in plain sight

I like to think that even though the Artifact Lab is essentially a fish bowl, when we are in here we are often hiding in plain sight. People in our department have been known to come up to the Artifact Lab to work on treatments because they are less likely to be interrupted up here. That sounds strange, I know, but it’s true. And sometimes our visitors don’t even think that WE are real, so we can kind of operate under the radar even when people are looking right at us. This is not the case all of the time, of course, and we do get plenty of visitors who tap on the glass and try to talk to us even when our backs are turned and we have earbuds in.

Aside from the people working in the lab, I think that there are a lot of things that go unnoticed too. Now, there are some things that people ask about all the time, like, “what is that Chock full o’Nuts can for?” and “what is in that jar?”.

These are pretty normal accessories in conservation labs, but of course most people would be puzzled by them at first. (The coffee can has been re-purposed as a sharps container, for disposal of old scalpel blades for example, and the jam jar is being used for disposal of cotton swab tips.)

Then there are things that go unnoticed but are arguably more fascinating, and puzzling. For example, we have never been asked, “why do you have an autopsy table in the lab?”. We probably have never been asked this because I would imagine that most people do not know an autopsy table when they see one. Our department inherited this table many years ago and when we opened the Artifact Lab in 2012 it somehow seemed appropriate to bring it up here (but really, we are NOT autopsying or unwrapping mummies, I swear). We have used the table on a daily basis, both for supporting mummies and large (people-sized) artifacts for treatment, and for prepping materials for re-housing artifacts.

Tawahibre’s coffin on the autopsy table during pXRF analysis. Link to original post here.

Unfortunately, it is not the most useful table, because it has a lip around the edge, the table surface is slightly inclined, and there is a hole on one end for the drain. But we made it work for us for over 4 years!

The autopsy table

The Artifact Lab has been closed to the public since December 31 and in the meantime we have been working away in here, but we are gearing up to reopen on April 8. When we reopen there will be some changes to both the lab space and the exhibition space. The most noticeable changes for visitors will be some new objects on exhibit, new graphics and text panels, and some other nice additions which I’ll write about in an upcoming post. But the change that we are feeling slightly sad about is that we are getting rid of the autopsy table. It has served us well but it just isn’t functional for our purposes anymore. And since many of you may not have noticed the table before, I didn’t want it to go away without mentioning it here.

We are hoping to find a good home for the table. Who might want an old autopsy table, you might ask? Well, this exists, so anything is possible. And actually, we can think of a lot of people who might like it.

Stay tuned to hear more about the other changes to the Artifact Lab, and what we’ve been doing in the meantime.

Considering Cleaning

Julia Commander is a third-year graduate student in the Winterthur/University of Delaware Program in Art Conservation. She is currently completing a curriculum internship at the Penn Museum.

It’s time to check back in with the Ptah-Sokar-Osiris figure. In my last post, I mentioned a few of the condition concerns including a significant darkening over the front surface. The uneven surface poses interesting challenges for cleaning, and there are multiple approaches and methods to consider.

Before cleaning proceeds, it is important to understand both the nature of the surface discoloration and the properties of the paint layers. Egyptian objects are not always straightforward, and Ptah-Sokar-Osiris figures have a broad range of condition issues and treatment histories. Check out the British Museum’s online collection for a fascinating look at comparable figures. Discolored or yellowed varnishes have been observed on Egyptian painted surfaces, such as the shabti box described in a previous post. One way to assess surface discolorations is ultraviolet (UV) light illumination, a non-destructive lighting technique. In the UV portion of the energy spectrum, aged coating materials including varnishes and adhesives often fluoresce brightly. Areas that absorb more UV light appear darker in comparison. For this figure, areas of fluorescence do not appear to correspond to the pattern of discoloration, which is most noticeable on the platform under the feet.

L-55-29. In normal light (left), you can see the darkened surface of the front of the figure. In ultraviolet (UV) illumination (right), specific areas fluoresce. The pattern of UV fluorescence does not correspond to the discolored areas or suggest an overall coating.

Additionally, the surface darkening extends over large areas of damage and paint loss, suggesting that it occurred later in the object’s history. In an attempt to understand the darkened surfaces, I will take cross-section samples, which involve tiny (less than 1 mm) flakes of the paint layers. By looking at the edge of a paint flake under magnification, I can observe the stratigraphy from surface down to ground level. One way to visualize this technique is to think about slicing a cake to see the layers inside. To make handling tiny paint flakes easier, they can be mounted in resin for observation under magnification. Through normal light and UV light microscopy, the presence of discrete coating or soiling layers may be observed.

To characterize the behavior of the paint layers, solubility tests were conducted under magnification with small amounts of solvent on cotton swabs. For this painted figure, surfaces appeared to be water sensitive but relatively stable in other solvents. This finding is consistent with typical Egyptian paint binders such as gums or animal glues, which are both water sensitive. Once I know what affects the original surface, I will be able to think about designing a strategy to reduce darkening while avoiding disruption of the paint layers.

Dry surface cleaning is one of the first methods to test for a water sensitive surface. Cosmetic sponges and soot sponges lifted significant dirt and grime, although the appearance of the figure’s surface was not visibly improved. Water-based solutions and small amounts of solvent were tested in discrete locations to assess their efficacy. Water-based, or aqueous, cleaning solutions can be adjusted with buffers and chelators to more effectively lift dirt and break up staining. Chelators, such as citrate and EDTA (ethylenediaminetetraacetic acid) are complex ions that attach to metal ions, a key component of most types of dirt. A citrate solution at pH 8 was found to be very effective for lifting dirt and staining, but I wanted to minimize surface interaction with water. One method to manipulate these interactions is to work through silicone materials. Silicone gels, such as Velvesil Plus, can from stable emulsions that hold aqueous solutions. Silicone solvents, such as cyclomethicone D4, can saturate surfaces and act as a barrier layer to protect from water.

Testing dry surface cleaning with a cosmetic sponge on the figure’s base.

Testing aqueous cleaning solutions to reduce discoloration with a small cotton swab.

Could this be used as an overall cleaning solution? A larger test area suggested that the combination of materials, when applied carefully with brushes and worked over the surface, lifts dirt without visibly disturbing paint layers. However, the cleaning effect is slightly uneven, which raises concerns about whether this technique will significantly improve visibility and legibility of surfaces. Since this object is a long-term loan from the Philadelphia Museum of Art, continuing discussion with the PMA senior objects conservator, as well as Penn Museum curators, will help clarify these decisions.

In addition to aqueous cleaning methods, I researched the feasibility of laser cleaning. Conservators have successfully employed laser cleaning in many scenarios where discrete layers of soiling need to be removed from surfaces. For Egyptian artifacts, some of the primary challenges include fine control over complex surfaces and slight yellowing after cleaning. While the literature suggests that laser cleaning is unlikely to be the right solution in this scenario, we decided to experiment with a mock-up test panel to gain a sense of the technique’s future applications in the lab. This involved gathering typical Egyptian pigments, including the famous Egyptian blue and green, and mixing appropriate binders to mimic historic surfaces. The panel consists of an animal glue ground with gum arabic paint, coated with an additional layer of mastic varnish for half of the test areas. Mastic, a plant-based resin, is comparable to traditional Egyptian resins such as pistacia. After adding a little bit of “dirt,” a sticky mix of starch powder and pigments, I am ready to start exploring the efficacy of our laser cleaning system for painted surfaces.

Creating a mock-up panel to test laser cleaning on painted surfaces. Materials include Egyptian pigments mixed with gum arabic binder, an animal glue ground, and mastic varnish.

Selected resources:

Korenberg, C., M. Smirniou, K. Birkholzer. 2008. Investigating the use of the Nd:YAG laser to clean ancient Egyptian polychrome artifacts. Lasers in the Conservation of Artworks: 221-226. London: Taylor and Francis Group.

Larochette, Y. 2012. Wolber’s world: A review of a textile wet-cleaning workshop held in Oaxaca, Mexico. Western Association for Art Conservation (WAAC) Newsletter 34(1): 24-26.

Roundhill, L. S. 2004. Conservation treatment considerations for an Egyptian polychrome wood coffin. Objects Specialty Group Postprints 11: 89-102.

Ptah-Sokar-Osiris and Treating Painted Surfaces

Julia Commander is a third-year graduate student in the Winterthur/University of Delaware Program in Art Conservation. She is currently completing a curriculum internship at the Penn Museum.

As a conservation intern working in the Artifact Lab, I was able to go shopping through shelves of Egyptian objects and scope out interesting treatment projects. A painted wood statue, depicting the composite god Ptah-Sokar-Osiris, immediately caught my eye. The figure has intricate painted designs decorating the mummiform figure and its base, as well as gilded details in the face and headdress.

Ptah Sokar Osiris Statue, L-55-29A-C

L-55-29C, detail of paint and gilding

High-status burials in 19th dynasty Egypt often included this type of mummiform statue. Comparable examples of the popular object type exist in collections worldwide, such as the British Museum and the Metropolitan Museum of Art. Common characteristics include carved wood, a preparatory gesso layer, polychrome design, and in some cases, a coating of varnish. Ptah-Sokar-Osiris statues also frequently feature small compartments carved into the wood figure or base. These cavities could contain small papyrus scrolls or textile wrappings. While examining the object with this in mind, I noticed a faint rectangular shape on the reverse of the figure’s head.

X-radiography, a non-destructive imaging technique that helps clarify construction details, was perfectly suited for the question of the compartment. Without disturbing the delicate painted surface, we were able to observe that a rectangular cavity is in fact cut into the head of the figure. Although the cavity appears to be empty, this interesting construction detail is consistent with similar Ptah-Sokar-Osiris figures.

L-55-29A detail (left) and X-radiograph (right). Image captured from 55 kV, 2 mA, and 6 second exposure.

The statue has several condition issues, such as actively flaking paint and significant darkening over the front surface. Additionally, the figure is unable to stand upright in the base, and the components do not fit together securely. Upcoming treatment aims to address these issues, and I will be searching for the right approach to cleaning and consolidation. The complex surface made of wood, gesso, and paint will require detailed testing to find appropriate solutions.

To further investigate painted surfaces and possible coatings, I used multispectral imaging (MSI), which incorporates multiple light sources to reveal details that cannot be seen in visible light. Interesting findings included the presence of Egyptian blue in the figure’s wig and broad collar, as well as the headdress. This pigment shows up in visible-induced infrared luminescence and is easily distinguishable from surrounding pigments.

Detail of multispectral imaging, highlighting Egyptian blue pigment. Normal light (top), visible-induced infrared luminescence (center) with Egyptian blue shown in white, and false color image (bottom) with Egyptian blue shown in red.

Learning more about the object’s structure and surface will help inform treatment decisions about this complex figure. Check back to see what else we learn and how treatment will proceed!

Artifact Lab on hiatus

Happy New Year! As I’ve mentioned in my 2 previous posts, the Artifact Lab exhibit/viewing area will be closed to museum visitors until April 8, 2017. During this time we will be working in the lab and updating this blog, but you will not be able to visit us in person. When we reopen there will be some changes in the lab and gallery space so please do come back and visit us in a few months! You can find up-to-date information on our gallery closures and re-openings on the Penn Museum’s website, here. See you in April! (but don’t forget that we will continue providing updates about our work on the blog).

’tis the season for…removing BJK dough

I had heard about this material, BJK dough, since graduate school but had never actually seen it on an object until coming to the Penn Museum. Now that I’ve encountered it, I know it when I see it. It’s often found as fills on ceramics in our collection that were treated in the 1970s and 80s. It’s brown, fibrous, and really hard. Sometimes it is painted but in some cases it is left unpainted because its brown, matte appearance worked well for filling archaeological ceramics (and other similarly-colored objects).

I first read about BJK and its predecessor, AJK, in this great JAIC article by Steve Koob, Obsolete Fill Materials Found on Ceramics. AJK was developed in the University College London (UCL) conservation lab in the 1960s, by mixing Alvar (polyvinyl acetal), jute, and kaolin in solvents, to create a putty. In 1980 Alvar was discontinued so was replaced by Butvar (polyvinyl butyral), to make BJK dough. Both AJK and BJK were used extensively in conservation labs during these decades to fill ceramics and for other gap-filling on objects. Some fills were made by creating a lattice-support with narrow strips. This terrific blogpost goes into detail about AJK and BJK and includes a recipe for making strips of dough for filling archaeological ceramics. This recipe is interesting for understanding the old treatment materials and methods, but just to be clear, is NOT recommended for conservation treatment any longer. We use materials that are now known to have better long-term aging properties, such as Paraloid B-72 bulked with glass microballoons.

Here are some examples of BJK dough that we’ve found on objects that are currently in the Artifact Lab:

31-17-318, painted ceramic vessel from Ur, before treatment (left) with painted BJK fills, and during treatment (right) with BJK fills removed. One of the removed BJK fills is pictured in the center.

73-5-557, Detail of iron sword from Hasanlu (Iran) with BJK fills (before treatment)

E8436, cup from Karanog, Nubia, Meroitic Period (ca. 100 BCE-300 CE) with large painted BJK fill. The black arrow points to a new crack that developed in the ceramic due to shrinkage of the BJK fill post-treatment.

Due to damage that we have observed on objects with BJK fills (see image above), and to prevent damage from occurring in the future, we often remove BJK when we find it on objects being treated in the lab. Fortunately, the BJK can be removed by poulticing with acetone, which causes it to become flexible and gummy enough to be scraped or gently pried away from the original object.

I think I can safely say that all of us in our department have done our fair share of picking off BJK from objects. Spending time undoing old treatments allows us to reflect on these past treatment choices and on our own decisions. We are very fortunate today to be able to learn from past treatments, to have decades of research and published observations to rely on for our own decision-making, and to have the technologies to allow us to better track condition of objects and materials over time.

As it is, this is a good time of year for reflection, but also to look forward to a new year ahead, and the certainty of new challenges and discoveries to be made. There will be no public access to the Artifact Lab from December 31 until April 8, but we will continue to update the blog as we work in the lab on new projects. Stay tuned, and Happy New Year, from all of us in the Conservation Department!