Glowing in the dark: multispectral imaging and Egyptian blue

There is something I’ve mentioned before on this blog, but never actually shown, and that is the ability to “see” Egyptian blue on objects using multispectral imaging. On many objects Egyptian blue is very well-preserved, so there is no need for special examination techniques in order to spot it. But there are cases in which being able to accurately identify this pigment is important. Sometimes Egyptian blue deteriorates either by changing color (to green or black) or by becoming lost altogether, making it difficult to know which areas may have originally been blue, or if blue was used at all.

And then there are objects like this one:

Front view of the shabti box in normal lighting conditions

Front view of the shabti box in normal lighting conditions

You’ve seen it before, it’s our painted wooden shabti box. I have been working on the treatment of this box for awhile now, mostly to stabilize the flaking paint and varnish. And this thick, orange-yellow varnish, which we believe is original, and is pistacia resin, makes it difficult to see the painted surface, both the details and the colors. While I could see that there is some green and possibly blue paint on this box, between deterioration of the paint and/or pigment, and the thick application of pistacia resin, I couldn’t say for sure which areas may have originally been painted blue…until now…

Taking advantage of the fact that Egyptian blue has luminescent properties when illuminated with visible light and captured in infrared, we can detect where Egyptian blue was applied. And wow, look at these results:

Visible-induced IR luminescence image of the shabti box. Light source: SPEX Mini Crimescope with 600nm band-pass filter. Captured with a Nikon D5200 modified camera with an IR 87C filter.

Visible-induced IR luminescence image of the shabti box. Light source: SPEX Mini Crimescope with 600nm band pass filter. Captured with a Nikon D5200 modified camera with an IR 87C filter.

This is the same surface of the shabti box seen in the first photo, but zoomed in a bit, and taken under different lighting conditions and captured with a different camera. The areas that appear white are where Egyptian blue was applied. Because everything else pretty much disappears on the box in this image, to better visualize where the Egyptian blue is in relation to other details, we created a false-color image in Photoshop:

False color image of the shabti box. The areas painted with Egyptian blue appear red.

False color image of the shabti box. The areas painted with Egyptian blue appear red.

In this false color image, the areas that appear red are where the Egyptian blue was applied. It’s not perfect (you can see that the bands in the hair of the figure on the right don’t really show up) but we could play around with the photographs a bit to improve this.

We did this imaging on all surfaces of the box, and on the box lids. Here is a regular photo, a visible-induced IR luminescence photo, and a false color image of one of the box lids, also showing lots of Egyptian blue:

Shabti box lid, normal light

Shabti box lid, normal light

Visible-induced IR luminescence photograph

Visible-induced IR luminescence photograph (areas in white = Egyptian blue)

False color image (areas in red = Egyptian blue)

False color image (areas in red = Egyptian blue)

You can use any regular/visible light source to produce the luminescence, but in this case, we used our fancy-schmancy new Mini Crimescope, which was developed for forensic work, but is useful to us because it allows us to examine objects under specific wavelengths of UV and visible light. We found that using a peak emission 600nm light source worked best for the excitation of the Egyptian blue.

In order to “see” the luminescence, we have to capture images using a modified digital camera, with an 87C IR filter.

In summary, we’re having lots of fun with our new equipment, and finding that these Egyptian objects are perfect subjects for learning how to use the Crimescope and the modified camera, because they produce such great, dramatic images.