Party Time or New Photo Light?

By Tessa de Alarcon

The conservation department recently acquired a new light for multi-modal imaging – an ADJ MEGA PAR Profile Plus (one for use at the conservation lab annex and one for the museum main lab). The MEGA PAR is a tunable LED light source, with 64 different color channels. While not designed for analytical imaging, it provides a bright and large spot size that we can use for visible induced infrared luminescence (VIL) imaging of Egyptian blue. It will also be something we can use to test out other imaging methods in the future. Taking VIL images is not new to the lab, but the light source we had been using stopped working and we needed to replace it. We are grateful to Bryan Harris for making the purchase of the new equipment possible.

The spectralon and the new MEGA PAR Profile Plus light (right) and the new equipment in use (left)

Along with the new light, we also acquired a new reference standard, a 99% reflectance spectralon. This standard is critical for developing methods and standard procedures for imaging in the lab. In this post I am going to show an example of how this standard can be used and how I developed a protocol for VIL imaging with the MEGA PAR light.

Set up for round one testing: Egyptian green (left pigment sample) Egyptian blue (right pigment sample) and a V4 QP grey scale card.

Since the MEGA PAR light is new, one of the first things I did when it arrived (after unpacking it and reading the instructions of course) was run a variety of tests on known reference materials to see what settings might work for creating visible induced infrared luminescence images of Egyptian blue. As part of that process, I set up a grey scale card (QP card V4) and two reference pigment samples, Egyptian blue and Egyptian green (both from Kremer pigments). I chose these so I would have a known pigment that should luminesce, the Egyptian blue, and one that should not, the Egyptian green. Using the department modified full spectrum camera, I took a visible reference image of the known pigments and the QP card using our regular fluorescent photo lights and a visible bandpass filter over the camera lens so that I could have a normal color image.

Screen shot of thumbnail images of the round 1 testing

Then I captured a series of images using the same set up but replacing the visible band pass filter with an 830nm long pass infrared filter so that I could capture images in the infra-red, with the fluorescent light turned off and the MEG PAR turned on. Each of the images I captured were with the same settings on the camera and with the MEGA PAR light in the same position, just going through each of the 64 color channel options.

Screen shot of Adobe Camera RAW showing the process for evaluating the response of Egyptian blue to each setting

I converted the images to grey scale adobe camera RAW by sliding the saturation level from 0 to -100, so that the red, green, and blue values (RGB) would each be the same. I then used the dropper tool to take a reading over where the Egyptian blue standard is in each image and recorded the number. The higher the number, the brighter the luminescence.

Set up for round 2 testing with the Egyptian blue pigment sample (top left), the Egyptian green pigment sample (below the Egyptian blue), the 99% reflectance spectralon standard (right), and a V4 QP grey scale card (bottom).

After doing that I had a reduced set of options that produced good luminescence in the Egyptian blue for a second round of testing. For round two I did the same thing with the more promising group, but also included in my images the 99% reflectance spectralon standard so that I could check and verify that the light is not producing infra-red radiation. If there is any infra-red, than the 99% reflectance standard should be visible. None of the second round of options showed any infra-red. While any of them can be used for VIL, CL08 gave the strongest response.

Screen shot of round 2 testing evaluation

After developing a working set-up, I did a test in the photo studio using an object that I knew had Egyptian blue, and the standards. I captured a visible image with the modified camera with the visible band pass filter and the fluorescent photo lights, and a VIL image with the 830nm long pass filter and the CL08 setting on the MEGA PAR. The false color image was created by splitting the color channels on the visible image in photoshop, discarding the blue data, and putting the VIL data in the red channel, the red visible data in the green channel, and the green visible data in the blue channel. As you can see the spectralon is not visible in the VIL image meaning there is no IR radiation being produced by the MEGA PAR light.

Images of E12974 with a visible image (left), a visible induced infrared luminescence image in the center showing Egyptian blue in white (center), and a false color image showing Egyptian blue in red (right).

After all this work, I had an opportunity to see how the new light would perform in less than ideal settings. I have been working on a study of one of the coffins in the collection, 2017-20-1.3, to examine the coatings and pigments. VIL is the perfect method of identifying blue areas on the coffin but the coffin is too big to fit in the department photo studio. The set of images below were taken in the Artifact Lab (our public lab in a gallery space) where there is IR from the windows (daylight) as well as from the gallery lights. I hoped that a short exposure with the new very bright MEGA PAR would reduce the effects of IR in the image. As you can see in these photos below, the 99% reflectance spectralon is slightly visible but not as clearly as the Egyptian blue on the coffin. These results are much better than what we used to get in the Artifact Lab using our old light, so I am very happy with these results.

Detail from the coffin 2017-20-1.3 with a visible reference image (left) a VIL image with Egyptian blue in bright white (center) and a false color image created by combining channels from the visible reference image with data from the VIL image resulting in the Egyptian blue showing up as red (right).