An Ivory Figure from Hierakonpolis

By Tessa de Alarcon

The figure you see here, E4893, is an ivory statuette from the site of Hierakonpolis that I am working on as part of an IMLS grant funded project. I have just started the treatment, but thought I would give a brief run through of the initial examination since this is a good example of when and why we use X-radiography in our department to evaluate the condition of objects before treatment.

Before Treatment photograph of E4893

You may have noticed that the middle of this object is fill, so not part of the object. The fill has some cracks and splits that suggests it is unstable and should be removed. There is no written documentation for when this fill was done or by who, but it’s possible that this was done shortly after it was excavated. The object was accessioned in 1898. Given that the conservation lab at the Penn Museum was not founded until 1966 that leaves a big gap for the possibilities for when this treatment might have been done.

Annotated before treatment photograph of E4893 indicating the large fill at the waist of the figure.

Based on previous experience, I often worry with these old fills that there are unseen things, like metal pins or dowels, lurking below the surface. X-radiography is a great way to check for these types of hidden previous treatment issues. Though in this case, what I found when I X-rayed the object was not your typical pin or dowel.

Before treatment photograph of E4893 (left) and an X-ray radiograph of the object (right). The X-ray was captured at 60kV, and 6mA for 6 seconds. There are four nails visible in the fill.

Here in the X-ray you can see what I found: while this fill did not have any pins or dowels, whoever had done this treatment had decided to reinforce it by putting nails (4 in total) into the fill material. While this makes the figure look like he has eaten a bunch of nails, it is in some ways better news than a pin would be. Pins usually go into the original material, and if they are iron, can rust and expand causing damage to the object. Pin removal can also be risky and lead to damage of the object especially if the pin is deeply imbedded or corroded into place. These nails, on the other hand, appear to be only in the fill and do not look like they go into the original material of the object at all. This suggests that removal of the fill and the nails should be possible without damaging the object. As this treatment progresses, I will follow up with additional posts and updates.

This project was made possible in part by the Institute of Museum and Library Services

A Puzzle without all the Pieces: Treating Papyri

By Jessica Byler

The condition survey of our papyri collection is complete – I counted almost 4,300 fragments of papyrus and vellum, more than we realized were there! The papyrus ranged in size from a few millimeters to 9 feet long. Now, I have moved on to treating a few of the papyri that will be on display in the new Egyptian galleries.

Many of the papyri are sandwiched between pieces of Mylar. Static from Mylar can lift off friable ink or even split the two layers of the papyrus fibers and damage the papyrus. In order to safely remove the papyrus, I use a MinION 2 Ionizing Blower to eliminate the static charge. After removing the papyrus from the Mylar, I can then remove old repairs, realign fragments and fibers that are out of place, and apply new tissue paper bridges. Using a light box can help me identify joins and keep fragments in alignment. Papyrus fibers have different thicknesses, widths, and orientations, so transmitted light from a light box reveals the unique fiber pattern.

Left: Removing papyrus (49-11-1) from a Mylar enclosure using an ionizing blower
Right: Using a light box to realign fragments

Let’s look at one papyrus I am currently treating: a Temple robbery papyrus (49-11-1), dated to the 20th Dynasty or 11th century BCE. Along with removing old materials that might harm or obscure the papyrus, a key reason I am treating this particular document is to make sure the joins are right. It is fragmentary and there have been several treatment campaigns to repair it using a variety of materials, including Scotch tape, Japanese tissue, and Document Repair Tape.

Temple robbery papyrus (49-11-1), before treatment

I removed the old repairs where possible and reassessed the location of the fragments. At some point, several of the fragments have become misaligned or detached. In several instances, the fragments were just slightly out of line and could easily be nudged back into place. However, I quickly noticed some issues with a long fragment on the far left (on the right in the photo of the back below), and a small rectangular fragment at the bottom.

Left: detail of the back of the right section before treatment
Right: Section under transmitted light from a light box, with red arrows pointing to the two fragments in the wrong spot

On the long fragment, there are ink marks either side of the join which do not meet up. If the fragment was in the correct location, you would expect the writing to extend over the break. On the smaller fragment, the color, curvature, and thickness were different than the surrounding fragments. Using transmitted light, it is clear the fibers of these fragments do not actually line up correctly. Although at first glance they might not look out of place, they clearly do not belong there.

Left: Detail of front, with red arrows pointing to ink which does not meet up
Right: Detail under transmitted light, with red arrows showing that the fibers do not line up

The long fragment has two lines of writing at the top, so the number of locations it could join was limited. The small fragment at the bottom did not have any writing on it, so it was harder to determine its orientation and position. To add to this complicated puzzle, these pieces also might not join to any of the extant fragments.

Left: Detail of back during treatment, with the two fragments, indicated with red arrows, properly aligned
Right: Detail of back during treatment, with red arrows pointing the two fragments, and blue arrows pointing to some of the new bridges; areas of white residue from the old materials is also visible

Thankfully, their proper locations were easy to find using a light box. As you can see in the detail photos above, the fibers of the papyrus were a perfect match. The tissue paper bridges I used were around the size of a grain of rice and are clearly visible but blend in nicely with the papyrus. The Temple robbery papyrus is now ready for display!

Temple robbery papyrus (49-11-1), after treatment

This project is funded by the Antiquities Endowment Fund (AEF).  The AEF is supported by an endowment established with funds from the United Stated Agency for International Development (USAID).

Papyri Project

By Jessica Byler

This fall, I started a survey of our Egyptian papyrus collection thanks to an ARCE (American Research Center in Egypt) grant. The goals of the survey include preparing and rehousing the collection to be moved to a new storeroom, identifying unstable papyri that need to be treated, and getting some of the papyri ready for exhibit. The Penn Museum is in the process of redesigning the Ancient Egyptian and Nubian Galleries, and the curators have identified around 70 papyri they would like to include. Part of my job is treating and rehousing these papyri and making recommendations on their display.

E16423, a private letter in Arabic

What is Papyrus?

The papyri in our collection are mostly manuscripts. A sheet of papyrus is made of two cross-laminated layers of thin fiber strips made from the stems of the papyrus plant (cyperus papyrus). One layer of fibers is laid vertically, and the other is laid on top horizontally, creating a sheet with a grid pattern. Individual sheets were then overlapped and joined to create rolls. These rolls could be used as a single, long sheet or could be cut down as needed. The side with the horizontal fibers is called the recto (think “right side”), and the side with the vertical fibers is called the verso (think “reverse”). Scribes often wrote on the recto along the horizontal fibers, though some scribes wrote against the fibers or on both sides of the sheet.

A piece of modern papyrus through transmitted light
E2751, some vertical fibers are missing, revealing the horizontal fibers from the other side

Looking for a join helps identify the recto. Most joins are horizontal fibers to horizontal fibers, though some are horizontal to vertical. Look along the horizontal fibers and see if they continue across the sheet. If they do not line up or if there is a clear overlap, that’s likely a join.

E16323, horizontal to horizontal join. The red lines indicate the direction of the fibers and join.
E16411B, vertical to horizontal join. The red lines indicate the direction of the fibers and join.

Scribes used brushes or reed pens to write on the papyrus sheets. Inks were made from mixing ground up pigments into a binder. The most common ink was carbon black or soot bound with gum to make black ink. Scribes also sometimes used red ink made from red ochre, iron gall, and sepia, among other pigments. Some papyri are thickly painted with gypsum, metal oxides, and earth pigments.

E3068, a painted papyrus manuscript
83-1-1I, a manuscript with both carbon black and red ink

Penn Papyrus Survey

The Penn Museum has around 1200-1800 papyri featuring a wide range of personal, legal, administrative, literary, and religious texts in six languages: Arabic, Greek, Coptic, Hebrew, Demotic, and Hieratic. The collection spans around 4000 years, from the Old Kingdom to Islamic Egypt. These include Books of the Dead, Homer’s Iliad, and the Gospel of St. Matthew. There are also groups of small fragments which have not been reconstructed or studied. The Penn Museum’s collection of papyri has never been the subject of a concerted conservation campaign – until now.

Most of the collection is currently encapsulated in Mylar and stored flat in manila folders or sandwiched between two glass plates. I am surveying the collection at the object-level, one by one. I examine, measure, and record each piece, noting the structure of the papyrus, how it is housed, old mends or treatments, condition issues, and if it needs to be rehoused or conserved. I follow the examination and documentation with photography. Images are available on our Digital Collections webpage.  Hopefully with the new photos and documentation, this collection will be more accessible to papyrologists and scholars around the world.

Photographing papyrus using a copy stand

More Information

Eventually, the information on the Penn Museum papyri collection documented in this survey will be included in the Advanced Papyrological Information System (APIS) database, where only a small fraction of our collection is represented today. There are a number of great resources if you would like to know more about the structure and conservation of papyrus. The University of Michigan, which holds the largest collection of papyri in North America, is active in papyrological research and education. The Brooklyn Museum and NYU have both recently done similar projects and have great blogs about their collections as well.

This project is funded by the  Antiquities Endowment Fund (AEF).  The AEF is supported by an  endowment  established  with  funds  from  the  United  Stated  Agency  for  International Development (USAID).

Horus gets a facelift

By Anna O’Neill, Alice and Herbert Sachs Egyptian Collections Conservator

When I last wrote about transforming a stela, I wrote about removing an old coating on a small stela fragment. Well, stelae come in all shapes and sizes, and I just finished treating another one!

We just opened Ancient Egypt: From Discovery to Display, which highlights some of the Penn Museum’s Egyptian artifacts while our larger galleries are being renovated. This was the perfect time for some of the pieces that have always been on display to come into the conservation lab for a little bit of TLC (tender loving conservation).

This stela is a black quartzite monument for the pharaoh Qa’a, the last king of the First Dynasty in Egypt, around 2910 BCE. It is about five feet tall and shows a falcon representing the god Horus standing atop a serekh (a boxy decoration representing a palace) containing the hieroglyphs for Qa’a’s name.

The Penn Museum Qa’a stela (E6878) before treatment with old restored areas outlined in red (left) and the Cairo example (right). A letter from Penn Egyptologist Sara Yorke Stevenson to the archaeologist William Flinders Petrie in 1901 declares that the restoration “gives an idea of life”.

As you can see in the image above, the stela was heavily restored with cement in the early 1900s to make it look whole. Unfortunately, the restoration had given Horus a somewhat comical expression. With a big beak and tiny eye, he looked perpetually disappointed and definitely not stylistically appropriate for his time. Fortunately, our statue has a mirror twin in the Cairo Museum, which it would have been paired with on site in Abydos. Because the one in Cairo is mostly intact, we can use it as an example of what ours would have looked like. The head and beak are much smaller and simpler, giving Horus the look of a bird of prey. With the curators, we decided to give Horus a facelift based on the Cairo Museum example.

First, we did some digital mock-ups of how the head would look before I painted the outline directly onto the restored area. Using a Dremel rotary tool with a grinding stone attachment, I shaped Horus’s head and beak to more appropriate proportions, which was a very dusty but very satisfying process. Since we didn’t have any good examples of what the eye might have looked like (the Cairo Museum face is damaged), I filled this area using Paraloid B-72 and glass microballoons. I also sanded down the squared-off edges of the restored border so they sloped down into the background, again like the Cairo Museum stela, and smoothed some of the rougher areas of restoration.

Horus’s reconstructed head before treatment (left), with rough digital sketch (center), and during reshaping with the Dremel (right). Please note that I only reshaped what I knew was the restoration material! Conservators never make changes to original parts of objects.

Once the curators were happy with the shape of Horus’s head, it was time to move on to painting. The previous paint that covered the cement was a color that didn’t quite match any of the tones in the stone – fine for display in a dim gallery, but the stela’s new home would be more brightly lit. Finding the right color was challenging because the top fragment, which was found a few years after the bottom pieces, is a slightly darker color than the rest of the stela. I decided on a mid-tone that worked with the base color of the surrounding original stone, and then used a sponge to layer lots of highlights and darker shades to blend in with the actual artifact. I also used paint to create the optical illusion of “finishing” the bottom left corner of the serekh so that it appears complete from a distance.

The Qa’a stela after reshaping and repainting the old restoration.

You can now see the Qa’a stela and lots of other amazing Egyptian artifacts in Ancient Egypt: From Discovery to Display. The Artifact Lab has also reopened, and we look forward to being able to talk to everyone about the work we’re doing to prepare for all the exciting changes at the Penn Museum.