Ancient Glow-in-the-Dark Artifacts

By Sean Billups

“Technical analysis” is a term frequently used in the conservation field to describe the use of specialized techniques to examine objects. Those techniques can include using scientific instruments, special cameras, and lots of other equipment. Maybe that term sounds boring, but in addition to telling you a lot about an object, you can also sometimes find fun surprises. 

This was certainly the case when I began some preliminary analysis on an alabaster bowl for the reinstallation of the Egyptian and Nubian galleries. The bowl dates from the Egyptian Early Dynastic period, from roughly 3000-2800 BCE.

Alabaster bowl, E14243

Before starting what was seemingly a simple treatment of retouching/repainting some old fills, I assessed it under ultraviolet (UV) light in a dark room. My goal was to take a look at the fills and adhesives, hoping that UV would give me some information about the materials used. When I turned off the UV light, I noticed a faint greenish glow coming from the bowl. It looked like a glow-in-the-dark sticker.

Phosphorescence from alabaster.

Trying this a few more times verified that I wasn’t imagining things, and the light was coming from the alabaster bowl itself. For a second or two after I turned off the UV light, the alabaster would glow. A bit of quick research taught me that this phenomenon is called phosphorescence, and does, indeed, occur in alabaster. 

Phosphorescence is a type of photoluminescence; the higher energy UV light is absorbed by the material and emitted at a lower energy (in the visible range). Unlike fluorescence, which occurs only while the light is applied, phosphorescence continues for a longer period of time, from a few microseconds to even hours. 

This glow-in-the-dark quality is usually not noticeable because even if there is enough UV to cause phosphorescence, the result is so dim that it gets easily overpowered in the presence of visible light. 

What does this finding have to do with planning my simple inpainting treatment? Absolutely nothing, but those are often the most interesting finds. While the inpainting treatment did not specifically benefit from this find, this knowledge can be applied in other ways, like identifying alabaster before turning to more intensive methods. Discovering phosphorescence in alabaster artifacts is a reminder of the many surprises that can be uncovered through the process of technical analysis–and that technical analysis, which might sound dry, is often how we find the most interesting things.